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ABSTRACT

The ever-increasing technological advances in embedded systems engineering, together with

the proliferation of small-size sensor design and deployment, have enabled mobile devices (e.g.,

smartphones) to recognize daily occurring human based actions, activities and interactions. There-

fore, inferring a vast variety of mobile device user based activities from a very diverse context

obtained by a series of sensory observations has drawn much interest in the research area of ubiqui-

tous sensing. The existence and awareness of the context provides the capability of being conscious

of physical environments or situations around mobile device users, and this allows network services

to respond proactively and intelligently based on such awareness. Hence, with the evolution of

smartphones, software developers are empowered to create context aware applications for recogniz-

ing human-centric or community based innovative social and cognitive activities in any situation and

from anywhere. This leads to the exciting vision of forming a society of “Internet of Things” which

facilitates applications to encourage users to collect, analyze and share local sensory knowledge in

the purpose for a large scale community use by creating a smart network which is capable of mak-

ing autonomous logical decisions to actuate environmental objects. More significantly, it is believed

that introducing the intelligence and situational awareness into recognition process of human-centric

event patterns could give a better understanding of human behaviors, and it also could give a chance

for proactively assisting individuals in order to enhance the quality of lives.

Mobile devices supporting emerging computationally pervasive applications will constitute

a significant part of future mobile technologies by providing highly proactive services requiring con-

tinuous monitoring of user related contexts. However, the middleware services provided in mobile

devices have limited resources in terms of power, memory and bandwidth as compared to the capa-

bilities of PCs and servers. Above all, power concerns are major restrictions standing up to imple-

mentation of context-aware applications. These requirements unfortunately shorten device battery

lifetimes due to high energy consumption caused by both sensor and processor operations. Specif-

ically, continuously capturing user context through sensors imposes heavy workloads in hardware

vii
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and computations, and hence drains the battery power rapidly. Therefore, mobile device batteries

do not last a long time while operating sensor(s) constantly.

In addition to that, the growing deployment of sensor technologies in mobile devices and

innumerable software applications utilizing sensors have led to the creation of a layered system

architecture (i.e., context aware middleware) so that the desired architecture can not only offer a

wide range of user-specific services, but also respond effectively towards diversity in sensor utiliza-

tions, large sensory data acquisitions, ever-increasing application requirements, pervasive context

processing software libraries, mobile device based constraints and so on. Due to the ubiquity of

these computing devices in a dynamic environment where the sensor network topologies actively

change, it yields applications to behave opportunistically and adaptively without a priori assump-

tions in response to the availability of diverse resources in the physical world as well as in response to

scalability, modularity, extensibility and interoperability among heterogeneous physical hardware.

In this sense, this dissertation aims at proposing novel solutions to enhance the existing

tradeoffs in mobile sensing between accuracy and power consumption while context is being inferred

under the intrinsic constraints of mobile devices and around the emerging concepts in context-aware

middleware framework.
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CHAPTER 1

INTRODUCTION

Growing sensor deployment and computing technologies in mobile devices have enabled re-

searchers to pervasively recognize the individual and social context that device users encounter with.

Hence, the inference of daily occurring human-centric actions, activities and interactions by a set

of mobile device based sensors has drawn much interest in the research area of ubiquitous sensing

community1. A human behavior is highly dependent on perception, context, environment and prior

knowledge of most recent event patterns. The understanding of human activity is based on the dis-

covery of the activity pattern and accurate recognition of the activity itself. Therefore, researchers

have focused on implementing computational pervasive systems in order to create high-level con-

ceptual models to infer activities, and low-level sensory models to extract context from unknown

activity patterns. However, the creation of a generic model to represent a true nature of human

behavior in this process stands as a big challenge. In this regard, the construction of a framework

within the realm of middleware technologies belonging to the context aware sensing systems has

been put forward to provide a required model for recognition of daily occurring human activities

via observations acquired by various sensors built in mobile devices. These activities are inferred

as outcomes of a wide range of sensory applications utilized in such diverse implementation areas

ranging from environmental surveillance, assisting technologies for medical diagnosis/treatments to

the creation of smart spaces for individual behavior modeling. Key challenges that are faced in

this concept are to infer relevant activity in a system that takes raw sensor readings initially and

processes them until obtaining a semantic outcome under some constrictions. These constrictions

mostly stem from the difficulty of shaping exact topological structure and modeling uncertainties

in the observed data due to both minimizing energy consumed by physical sensor operations and

analyzing sensory data that is in process [5, 6].

1Paradigm of ubiquitous sensing is also described as pervasive computing, mobile computing, context-aware sensing,
ambient intelligence or more recently, everyware.

1
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Today’s mobile devices have been becoming increasingly sophisticated and the latest versions

of them are now equipped with a rich set of powerful small size built-in sensors such as accelerometers,

ambient light sensors, GPSs, magnetic compasses, Wi-Fi, etc. These sensors can directly or indirectly

measure various information belonging to the physical world surrounding the mobile device; thereby,

the ubiquitous use of the mobile devices in the society creates a new exciting research area for

context-aware sensory data mining applications. Specifically, smartphones could provide a large

number of applications within the defined research area. Since human beings are involved in a vast

variety of activities within a very diverse context, and the usage of mobile phones are getting more

integrated into human lives, a specific context acquired through built-in sensors can be extracted by a

smartphone application. Then, a desired information within the context can be inferred by successful

computing implementations. These applications can be classified under two different categories:

personal/human-centric and participatory/community/opportunistic sensing. In personal sensing

applications, the device user is the point of interest. For instance, the monitoring and recognition of

the user related posture and movement patterns for a personal fitness log or for health care reasons

is an active research topic in this field. On the other hand, participatory sensing relies on the

multiple deployment of mobile devices to interactively and intentionally (e.g., also autonomously in

opportunistic sensing) share, gather and analyze local knowledge which is not solely based on human

activity, but also based on the surrounding environment. Hence, participatory sensing requires a

collection of sensory data obtained through multiple user participation in order to result in a large-

scale phenomenon, which cannot be easily measured by a single user participation. For example,

delivering an intelligent traffic congestion report while drivers are providing their speeds and exact

locations. In summary, the generic idea of all possible sensing applications is to orchestrate the

increasing capabilities of the mobile devices (e.g., computing, communication and networking, and

sensing) through running software on an existing hardware platform at a right time and place in

order to enable services to infer meaningful information for the benefit of individual and community

use.

However, the middleware services provided in mobile devices have limited resources in terms

of power, memory and bandwidth as compared to the capabilities of PCs and servers. Above all,

power concerns are major restrictions standing up to implementation of context-aware applications.

This requirement unfortunately shortens device battery lifetimes due to high energy consumption

caused by both sensor and processor operations. Specifically, continuously capturing user context

2
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through sensors imposes heavy workloads in hardware and computations, and hence the battery

power rapidly depletes. Therefore, mobile device battery lifetimes are reduced while operating

sensor(s) constantly. One solution is to take precautions on sensory operations while putting them

into sleeping mode to reduce power consumption. However, this precaution turns into an accuracy

problem that the middleware services may produce while providing information to the applications.

This precaution also triggers another important topic that researchers have been studying, which

is based on finding optimal solutions to balance the trade-off existing between power delivered by

the mobile device battery and accuracy in operation of applications. Hence, the key goal lies in

discovering the best characteristics of the target complex spatial phenomenon being sensed, meeting

the demands of applications, and satisfying the constraints on sensor usage.

1.1 Motivation

The evolution of mobile devices outfitted with powerful sensors leads to progress in the

advancement process of the Internet of Things [7, 8]. The integration of sensing and advance com-

puting capability of these sophisticated devices produce sensory data and exchange information

among local or system-wide resources by feeding the Internet at a social scale within the concept of

personal or participatory sensing. This situation will direct the concept of the Internet of Things

to shift into a collection of autonomous, ambient intelligent and self-operated network nodes (e.g.,

independently acting smartphones) which are well aware of surrounding context, circumstances and

environments. With these capabilities, the new network architecture would enhance data credibility,

quality, privacy and share-ability by encouraging participation at personal, social and urban scales.

It also would lead to the discovery of knowledge about human lives and behaviors, and environ-

mental interactions/social connections by leveraging the deployment capacity of smart things (e.g.,

smartphones, tablets) in order to collect and analyze the digital traces left by users.

Most sensors currently available on mobile devices are designed to perform some specific

applications. For example, accelerometers for detecting screen orientation, a microphone for voice

conversations, a camera for capturing images and a GPS for displaying location. However, by

introducing intelligence, situational awareness and context recognition into these devices, and by

giving the right architecture within the context of ubiquitous sensing in order for enhancing and

systematizing the existing methodologies, built-in sensors could be re-purposed and could act as

proactive sensor nodes. Thus, smartphones could be used as instruments to collect data and provide

3
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meaningful observations about user behaviors and surrounded environment such as measurement of

activity by accelerometer, ambient sound environment by microphone and estimation of time and

location user spends indoors and outdoors by GPS. In addition, external sensors, such as biomedical

sensors (e.g., ECG, BVP, GSR, and EMG), can also be deployed with a wearable strap on human

bodies. Hence, more than one sensor (multiple sensory systems) would be available in ubiquitous

sensing for health. Information obtained from different sensors can be cross-linked and presented

as a new valuable input. For instance, GPS and accelerometer actualizes Geographic Information

Systems (GIS) by potentially providing insight as to how the proximity of recreational facilities affects

physical activity levels, or how the relative accessibility of grocery stores and fast-food restaurants

influence a diet program. Wi-Fi can be leveraged to determine relative proximity of individuals

to each other or fixed locations. Bluetooth, as well as ZigBee, has been used for ambulatory data

collection of more traditional signals, such as blood pressure, heart rate, respiration, and blood

glucose level for monitoring community health.

1.1.1 More Focus on the Importance of Mobile Sensing in the Area of Health Com-
munity

The usage of mobile devices within the context of the ubiquitous sensing is not a new research

area. Previously, this technology had been successfully integrated in zoology and veterinary medicine

to study the feeding habits and social behaviors of some types of animals from zebras to whales;

whereas the adaptation of this technology to human health has only recently begun. With the

tremendous development of smartphones and implementation of relevant context-aware applications,

it becomes possible to acquire insights about benefits of ubiquitous sensing in the health industry,

see Figure 1.1, especially in terms of its role in the social and physical environment.

The goal of community health programs is to improve the overall quality of life by promot-

ing cognitive, physical, and social/emotional well-being [9, 10]. Continuous observation of routine

behaviors reflecting physical and physiological health situations can be the source of prediction of

future health problems. The conventional model for collecting behavioral data in the health sciences

relies on collected data in laboratory settings and/or through periodic surveys/reports. However,

this model has several drawbacks as follows:

• excessive time and resource requirements to gather simultaneous data from individuals

4
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• occasionally measured, randomly taken, manually obtained behavioral data sometimes

fails to present real and finer details in health states

• too much effort to be suitable for constantly running long-term monitoring

REMOTE HEALTH

MONITORING

Figure 1.1: Remote health monitoring

On the other hand, automatic sensing of the physical health of individuals based on mobile

devices is an active research area. Progress in mobile sensing in terms of recognizing the social and

cognitive well-being of humans will bring so many benefits to clinicians, patients, and researchers.

Mobile sensing systems infer very detailed measurement information of people’s social and behav-

ioral attitudes in their environments over extended time periods. The new health care system will

definitely promote some improvements such as:

• monitoring of health status and well-being of individuals. In case of emergency, quick

help can be obtained from a primary care and medical home team.

• a detailed analysis of how individuals interact with each other, which can lead to better

understanding of behavioral factors that influence their social and cognitive well-being.

As a result, clinicians can select appropriate interventions.

• increase in early diagnosis, behavioral interventions, and self-monitoring to improve social

and cognitive well-being through automatic tracking and detailed analysis of behavior.

5
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Generally speaking, mobile sensing would be useful for quantifying social wellness from the

behavioral indicators, and also for better understanding of how a mobile technology can lead to

advancement in health assessment and interventions.

1.2 Challenges

Mobile devices supporting emerging computationally pervasive applications will constitute

a significant part of future mobile technologies by providing highly proactive services requiring

continuous monitoring of user related contexts. However, a major challenge standing up to sensor-

rich devices is resource-limitation, see Figure 1.2. Specifically, continuously capturing user context

through sensors imposes heavy workloads both physically and computationally during the operation

of mobile devices, thereby drains the battery power rapidly.

To better understand this issue, an application example in [11] can be examined. Accord-

ingly, the accelerometer sensor built-in HTC Touch Pro is employed at a fixed sampling frequency.

When the phone receives data samples from the accelerometer, the overall power consumption on

device increases by 370 mW; whereas, the accelerometer, Kionix KXSD9, should consume less than

1 mW while being active according to the data sheet. Even if the accelerometer itself wastes very

little power to operate its functionality, the phone, together with its main processor and other hard-

ware components, causes much more power consumption while being in process to accomplish a

contextual sensory data extraction. Another example can also be given by a provided study in [12].

It is reported that today’s mobile devices are not feasible to employ all sensors at the same time

by giving an example of Nokia N95 mobile phone with a fully-charged battery. It is experimentally

examined that the phone battery would get totally depleted within six hours if GPS is switched on

permanently, even it is not being actively used; whereas the same battery supports a conventional

telephone conversation up to ten hours.

Besides the arising concern about increasing power consumptions, the analysis and inference

process of contextual sensory data has many drawbacks as well. Many studies can be found in which

a framework is proposed to capture and evaluate sensory data. Most of the studies rely on the

recognition of user activities and the definition of common user behaviors. The applied methods

in relevant studies are based on statistical models, predefined feature extractions and classification

algorithms. However, none of these studies engage themselves to model a common framework in

order to construct a generic structure for future context-aware applications. They would rather

6
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Figure 1.2: Challenges in mobile and pervasive sensing

have canalized solutions to solve their own unique problems instead of proposing a generalized

approach. Therefore, these studies mostly focus on a specific sensor while looking for possible target

applications in order to exploit the contextual data. A generic framework which fulfills requirements

set by all types of context-aware applications was not identified. This problem often stems from the

difficulty in building a reliable data set in order to represent a specific recognition interest since the

obtained sensory data may vary under different circumstances (e.g., human speech with a variant

background noise or placement of the mobile device). As a result, context inference algorithms would

not be practical toward varying sensing conditions and eventually tend to perform poorly. Hence,

the robustness becomes an important system attribute to consider. For instance, the robustness

turns into a severe problem in participatory sensing applications while reasoning different inference

assumptions from multiple co-located mobile devices on a specific sensing task. One solution to the

robustness problem can be considered by taking advantage of cloud computing technologies which

enable to share information and ensemble situational resources between co-located mobile devices by

cooperating them to boost up the sensing performance, robustness, and by delivering more effective

achievement on a common sensing task.
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Another important system attribute that needs to be considered is preventing usage of

supervised learning strategy in context inference algorithms. Most systems take pre-defined models

or classifiers by creating a specific training data after several repetitions of experiments, which returns

into processing large amount of data classes, thereby it forces the analysis of the data to be carried

out under offline processing. Obtaining training data classes to feed statistical models, classification

or machine learning algorithms in a supervised learning strategy is an expensive real-time operation

for mobile devices because it is impractical in terms of computational manner while acquiring and

analyzing sensory data, managing resources by storing training samples, handling scalability problem

by labeling data, and regulating bandwidth problem by transferring large information. Therefore,

the utilization of sensors must be lightweight and unobtrusive. Also, the applied classification and

machine learning algorithms used to process sensory data must be trainable without requirements

of computationally expensive human-intervened supervisory learning mode.

In conclusion, new generation mobile devices running context-aware applications should

provide a scalable and energy efficient context monitoring architecture. The designed architecture

should actively manage operations between context aware applications and computing resources,

and coordinate multiple applications effectively to leverage the limited resources, and provide the

quality service to users.

1.3 Dissertation Outline

The overview of the dissertation, seen in Figure 1.3, is as follows: Chapter 2 includes com-

prehensive information around the dissertation topic. The definition of context, and the stages to

infer context together with context modeling problem are introduced in this chapter. The chap-

ter also introduces the context aware middleware services, and their important properties such as

transparency, adaptability, and reflectiveness. Finally, the chapter summarizes recently released sig-

nificant context aware applications, and categorizes them under the interested context. Chapter 3

proposes a novel context inference algorithm by processing the raw sensory data. The smartphone

accelerometer sensor is used for providing relevant sensory data and of course the context. Chapter 4

presents a novel context aware framework design within the middleware services. The framework

aims at recognizing the user related activities, discovering the activity profile and tendency towards

a change in the profile, and estimating the instant activity if a relevant sensory information does

not exist. Chapter 5 investigates the battery behavior towards changing loads, and forms an analyt-
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Figure 1.3: Dissertation outline

ical model to investigate variant battery discharge profiles. Having the knowledge of the battery’s

nonlinear behavior, a detailed look into sensory operations is provided, and energy consumption pro-

files for the corresponding operations are correlated with the battery discharge. Chapter 6 presents

another novel context aware framework model design, but this time the concept is designed as inho-

mogeneous, which considers user activity profiles are time-variant. In this chapter, the adaptability

problem caused by the inhomogeneity is solved by an entropy rate analysis on user activity profiles.

A sensor management system is also integrated to implement different sensory operation methods

in order to achieve an efficiency in power consumption while a context-aware application is running.

Finally, Chapter 7 points out future research directions and integrated topics related to enhancement

of the middleware services which this dissertation proposes.

1.3.1 Chapter 2: Context-Awareness: A Survey

The existence of context allows personalization of network services and is useful for mo-

bile device users. In addition, awareness of the context provides the capability of being conscious

of physical environments or situations around mobile device users, and makes these services re-

spond proactively and intelligently based upon such awareness. With the evolution of smartphones

and the increased computational power within these devices, developers are empowered to create

context aware applications for innovative social and cognitive activities in any situation and from

any location. This leads to the exciting vision of forming a society of “smart spaces, or “Internet

of Things” [7, 8]. Hence, the key idea behind context-aware sensing applications is to encourage

users to collect, analyze and share numerous local sensor knowledge for large scale community use.
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The latter creates a knowledge network which is capable of making autonomous logical decisions to

actuate environmental objects and also to assist individuals.

1.3.2 Chapter 3: Context Inference: Light-Weight Online Unsupervised Posture De-
tection by Smartphone Accelerometer

This chapter proposes a light-weight online classification method to detect the user centric

postural actions, such as sitting, standing, walking and running, by smartphones. These actions

are named as user states since they are inferred after the analysis of data acquired through the

accelerometer sensor built-in smartphones. To differentiate one user state to another, many studies

can be found in the literature. However, this study differs from others by offering a computational

light-weight and online classification method without knowing any a priori information. The pro-

posed method not only provides a standalone solution in differentiation of user states, but also assists

other widely used classification methods by generating training data classes and/or input system

matrices. In addition, this chapter intends to improve these existing methods for online processing.

Finally, the proposed method still makes a solid differentiation in user states even where the sensor

is being operated under slower sampling frequencies2.

1.3.3 Chapter 4: Context-Aware Framework: A Basic Design

This chapter presents a novel framework which is based on Hidden Markov Model (HMM)

statistical model and learning from data concepts. The framework either recognizes or estimates user

contextual inferences called ‘user states’ for future context-aware applications. Context-aware appli-

cations require continuous data acquisition and interpretation from one or more sensor reading(s).

Therefore, device battery lifetimes need to be extended due to the fact that constantly running

built-in sensors deplete device batteries rapidly. In this sense, a framework is constructed to fulfill

requirements needed by applications and to prolong device battery lifetimes. The ultimate goal of

this chapter is to have accurate user state representations and to maximize power efficiency. Most

importantly, this research intends to create and clarify a generic framework to guide the development

of future context-aware applications. Moreover, topics such as user profile adaptability and adaptive

sampling are presented. The proposed framework is validated by simulations and implemented in a

2The content of this chapter is documented in parts in [13, 15]
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real-time application. According to the results, the proposed framework shows an increase in power

efficiency of 60% for an accuracy range from 75% up to 96%, depending on user profiles3.

1.3.4 Chapter 5: Analytical Modeling of Smartphone Battery and Sensors, and En-
ergy Consumption Profiles

The usage of mobile devices, such as smartphones, is constrained by battery lifetimes. With

the ever-increasing computing power and hardware development in the mobile devices comparing

to the slow growth in the energy densities of the mobile device based battery technologies, topics

such as the extension of battery lifetimes and the estimation of energy delivery by the batteries

have been focused recently in the research area of mobile computing. Hence, modeling of the power

consumption profiles on mobile device usage with the knowledge of the battery behavior becomes

very important for energy optimization and management of resource constrained mobile computing

systems. This chapter studies the battery modeling under the scope of the battery non-linearities

with respect to variant battery discharge profiles. In addition, the energy consumption behaviors of

some smartphone sensors are analytically modeled. Especially, a real time application is provided

for the accelerometer sensor to investigate the energy consumption behavior in detail. Energy con-

sumption profiles are created by assigning different pairs of duty cycles and sampling frequencies in

the sensory operations. Finally, a Markov-reward process is integrated in order to model the energy

consumption profiles and represent the energy cost by each profile as an accumulated reward in the

process. The accumulated reward is also linked to the battery modeling to make a connection be-

tween the usage pattern on sensors and the battery behavior. In conclusion, with the understanding

of nonlinearity observed on the batteries with respect to variant operational methods in sensors, a

tolerable power consumption balance is achieved while employing context aware services in resource

constrained mobile devices4.

1.3.5 Chapter 6: Context-Aware Framework: A Complex Design

New generation mobile devices have become inevitable to be employed within the realm of

ubiquitous sensing. Especially, smartphones have gained importance to be used for Human Activity

Recognition (HAR) based studies since it is believed that recognizing the human-centric activity

patterns accurately enough could give a better understanding of human behaviors, and also more

3The content of this chapter is documented in parts in [16], and the relevant permission is attached in B
4The content of this chapter is documented in parts in [17, 18]
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significantly, it could give a chance for assisting individuals in order to enhance the quality of lives.

However, the integration and realization of HAR based mobile services stand as a big challenge

on resource-constrained mobile embedded platforms. In this manner, this chapter proposes a novel

Discrete Time Inhomogeneous Hidden Semi-Markov Model (DT-IHS-MM) based generic framework

to address a better realization of HAR based mobile context-awareness. In addition to that, the

chapter provides power efficient sensor management strategies including three intuitive solutions,

and also Constrained Markov Decision Process (CMDP) and Partially Observable Markov Decision

Process (POMDP) based optimal solutions in order to respond the tradeoff defined between the

accuracy in context-aware services and the power consumption caused by the service operations.

In conclusion, the proposed tradeoff solutions achieve a 50% overall enhancement in the power

consumption caused by the physical sensor with respect to overall 95% accuracy rate thanks to the

provided adaptive context inference framework5.

5The content of this chapter is documented in parts in [19]
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CHAPTER 2

CONTEXT-AWARENESS: A SURVEY

Many researchers have studied context-awareness through mobile devices within the area of

ubiquitous sensing, thereby the context awareness and use of this context in benefit of individual

or community scale have taken a significant role in mobile computing platforms. Context-aware

systems aim at using a mobile device (e.g., a hand-held smartphone or attached/wearable device)

integrated with smart sensors to monitor and measure individual and environmental phenomena

with the purpose of assisting or evaluating human lives in order to achieve a desirable quality of life.

The existence of context makes network services able to be personalized and useful to mobile

device users. In addition, awareness of such context provides the capability of being conscious of

physical environment and situation around mobile device users, and makes these services respond

proactively and intelligently based upon such awareness. With the evolution of smartphones and

the increased computational power within these devices, developers are empowered to create context

aware applications for innovative social and cognitive activities in any situation and from any loca-

tion. Hence, the key idea behind context-aware sensing applications is to encourage users to collect,

analyze and share numerous local sensor knowledge for the purpose of large scale community use

by creating a knowledge network that is capable of making autonomous logical decisions to actuate

environmental objects and assist individuals.

2.1 Contextual Information

The ubiquity of mobile devices and proliferation of wireless networks will allow everyone

permanent access to the Internet at all times and all places. With the development and deployment

of new sensor technologies into mobile devices, these devices gain environmental intelligence, thereby

providing the capability to sense, reason and actuate the physical world. In the real world, being

aware of context and communicating it is a key part of human interaction. A context is defined as a

data source which can be sensed and used to characterize the situation of an entity. In other words,
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the context describes a physical phenomenon in a real world environment. Hence, the context can

be described in a different way according to how the sensor is being used. The context can also be

defined as a characterization of a specific entity situation such as user profile, user surrounding, user

social interaction, user activity etc. For instance, let us define the entity by user and the context

by location information, in this sense, context becomes a much richer and more powerful concept,

particularly for mobile users in order to make sensor network services much more personalized, and

more useful. Therefore, context awareness refers to the capability of an application being aware

of its physical environment or situation and responding proactively and intelligently based on such

awareness [20].

2.2 Context Representation

The property of context-awareness can be applied to mobile device based applications and

systems in order to reduce human intervention by enabling automatic proactive assistant services.

Many context aware applications provide this assistance by using solely logical context which is ob-

tained via data mining techniques (e.g., stored information in profiles, databases or social websites).

However, with the proliferation of sensor technologies, external physical factors (e.g., temperature,

light, location etc.) are added into context aware systems.

A sensor, in context aware applications, is described not only as a physical device, but also as

a data source which could be used for context representation. The collected contextual information

may range in a wide sense in terms of specification and representation of a phenomenon in real world

onto an entity in the cyber world, see Figure 2.1. Hence, the sensors can be classified under the

following categories:

• Physical sensor : a sensor which can capture almost any data belonging to the physical

world (e.g., GPS: location, accelerometer: activity etc.).

• Virtual sensor : a source of information from software applications and/or services and an

expression of a semantic data obtained through cognitive inference (e.g., location info by

manually entered place pinpoint through social network services or computation power of

devices etc.).

• Logical sensor : a combination of physical and virtual sensors with additional information

obtained through various sources by user interactions (e.g., databases, log files etc.).
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Figure 2.1: Context representation

Sensors are accepted as low-level context which is directly referred to raw data. According to

levels of abstractions, high-level context is inferred from low-level context(s), which is called context

interpreting. Hence, the definition of semantic meta-sensor/meta-data/meta-context implies a level

of abstraction [21, 22] rising from the low-level context, also called context providing, see Figure 2.2.

Unlike the sensors, the context can be divided into the following categories:

• Device context : e.g. net connectivity, communication cost and resources.

• User context : e.g. profile, geographic position, neighbors, and social situation.

• Physical context : e.g. temperature, noise level, light intensity, traffic conditions.

• Temporal context : e.g. day, week, month, season, year.

2.3 Context Modeling

Being associated with the variant context sources, accurate representation of context with a

high certainty under different conditions of measuring range and sampling methods, is very important

in assuring the quality of contextual information. In this sense, for the context aware applications,

the definition of a desirable context is important. A clarified and consistent definition of context is a

key property to ensure applications adapt to heterogeneous environment which surrounds users and

inform users of such variant awareness in the defined context. The context acquisition then comes

after by gathering raw sensory data through sensors. Finally, the context modeling is required to

reason and interpret dynamic context representations accurately enough at a high level abstraction

in an unobtrusive way. A good context modeling aims at reducing the complexity of applications

for robustness and usability as well as improving their adaptability and maintainability for future
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evolvement. In order to accomplish that, it has to consider heterogeneity (i.e., imperfect dynamic

nature) and mobility (i.e., asynchronous, timeless data capture) of a large variety of context sources

at any level of abstraction. It also considers relationships and dependencies amongst semantic

entities such as accuracy in context provisioning versus remaining battery power. Some context

models have been proposed, such as Key-Value pair Models, Scheme Models, Graphical Models,

Object Oriented Models, Logic Based Models, and Ontology Based Models. Most models create

meta-data in form of profiles to represent characteristics, capabilities and requirements of context

resources provided by users, devices, and service components. Another system attribute provided

by these models while context modeling is to apply policies in order to express behaviors and actions

among profiles [23–25].

2.4 Context Inference

One of the most important properties of context aware services is to make context inferences

through sensory data. The inference functionalities, such as sensory data acquisition and processing,

may show differences in terms of what context modeling or reasoning is applied [26]. However, the

context is commonly referred to as low-level (i.e., atomic) context since all required operations are

carried out directly from the data obtained through the physical sensors. In addition, the context

is referred to as high-level context (meta-context/data), obtained by means of abstractions through

the combination of low-level and/or high-level contexts, is called ‘composition’.
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Figure 2.3 shows the stages of context inference process:

• Sensory readings are collected by a sliding window with a specific time length and an

overlap value. The length of windowing is an important design merit. Shorter windowing

cannot seize the context properly, whereas a wider windowing would create a latency

in detections and put additional workload in computations. Hence, the obtained data

segments by optimal windowing would provide more relevant information for context

classification. In addition, the overlap value is also important in detecting any change in

the context.

• Preprocessing (e.g., context filtering or sensory data fusion) could be applied if the raw

sensory data is too coarse grained. It may also offer necessary modifications to correct

deficiencies in the data due to the limitations of sensory operations (e.g., power concern).

• It is difficult to analyze, to build a classification model, and to infer any context from

raw sensory data since it may consist of a large number of variant attributes, irrelevant

information and additive noise distortion. Therefore, feature extraction is applied to

exploit hidden information inside the sensory data set and to remove a direct effect of the

additive noise distortion. It also enables separability in the context classification algorithm

while extracting and analyzing the spatial characteristics of sensory data in each sliding

window frame, and assisting in identification of different context classes. Also, a feature

vector, which constitutes a representation of statistical characteristics in the contextual

data, is constructed by using diverse signal processing primitives ranging from time space

based features such as mean, standard deviation, correlation etc. to frequency spectrum

based features such as entropy, FFT coefficients, power density etc., and also wavelet

transforms, see Table 2.1.

17



www.manaraa.com

• Constructing the feature vector and allowing it to be used by classification algorithms

require high computational complexity. There is no necessity to repeatedly and redun-

dantly compute some features, which are not helpful while inferring the context. Hence,

the dimension of the feature vector needs to be reduced until it has sufficient statistics,

in order to both model the context and allow lower complexity in the computations.

• The diverse characteristics of feature vectors enable us to create training contextual data

classes (i.e., structural features) for classification algorithms in order to represent different

context entities. Thereby, a training data class is employed by classifiers (e.g., pattern

recognition/machine learning based classifiers) to build a classification model, which will

allow for an unknown feature vector to test for its membership to any class dependency.

The classification process essentially takes one of classifiers to map a feature vector into

a training contextual data class. This process is called supervised classification. Various

classification algorithms can be used as a classifier to implement a context recognition sys-

tems. From Naive Bayesian approaches and Decision Trees to pattern recognition tech-

niques such as Gaussian Mixture Model, k-means, k-Nearest Neighbors (k-NN) search,

Support Vector Machines (SVMs), many classification algorithms are involved in this

process in order to cluster data classes, and then to infer relevant contexts. In addition,

a statistical tool based classification such as Hidden Markov Models (HMMs) or AutoRe-

gressive (AR) Models is widely applied. Furthermore, pattern recognition toolkits such

as WEKA provides powerful solutions to the context clustering problem, see Table 2.2

for widely-used classification algorithms. However, since the supervised classifiers need

extensive computations to generate models for training contextual data classes and to

test for unknown pattern with the trained models, the definition of self- or co-learning

based semi- or un-supervised classifiers to actualize proactive context inferences without

knowing a prior data class have been actively researched recently [27].

• Lastly, the output of classifiers may not always resolve consistent discrimination in a time

sequence of adjacent context inferences. In such cases, a basic smoothing technique which

takes a majority voting scheme with a sliding window of a specific history length of context

inferences. Hence, any inconsistency (i.e., false truthfulness) can be eliminated.
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Table 2.1: Feature selections

Feature Space Features

Time Domain

mean, standard deviation, variance,
magnitude, derivative, min-max,

amplitude, histogram, interquartile
range (IQR), mean absolute deviation
(MAD), correlation between axes,

peak counting, rms, sign, and kurtosis,
zero-crossing rate

Frequency domain

Fourier Transform (FT), Discrete
Cosine Transform (DCT), entropy,
centroid, maximum frequency, FFT

energy, FFT mean and FFT standard
deviation

Others
AutoRegressive coefficients, wavelet

transforms

Table 2.2: Classification algorithms

Classification Algorithm References
Decision Tree (DT), Bayesian Network (BN), Naive Bayes (NB) [6, 12, 28–32]
Multilayer Neural Networks (MNN)/ Meta Classifier Fusion [33–37]

Fuzzy Logic [34, 38, 39]
Gaussian Mixture Model (GMM) [40]

k-means/k-Nearest Neighbor (k-NN) [41, 42]
Hidden Markov Models (HMM) [29, 36, 43, 44]
AutoRegressive Models (AR-M) [45, 46]
Support Vector Machine (SVM) [32, 45, 47, 48]

Principal Component Analysis (PCA) [34, 48]
Linear/Quadratic Discriminant Analysis (LDA/QDA) [34, 35, 42]

HAAR Wavelet Models [49]
Classifier ensembles: Boosting and Bagging [50]

Toolkits: WEKA [49, 51–53]

2.5 Context-Aware Middleware Design

The growing deployment of sensor technologies in mobile devices and innumerable software

applications utilizing sensors to offer a wide range of user-specific services have lead to create a

layered system architecture so that the desired architecture can respond effectively towards diver-

sity in sensor utilization, large sensory data acquisitions, ever-increasing application requirements,

context-processing software libraries, mobile device based constraints and so on. The ubiquity of

these computing devices in a dynamic environment where the sensor network topologies actively

change, yields applications to behave opportunistically and adaptively without a priori assump-
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tions in response to the availability of diverse resources in the physical world, and also scalability,

modularity, extensibility and interoperability among heterogeneous physical hardware [54, 55].

A conventional middleware takes place of the Session and Presentation Layers, see Figure 2.4,

by providing a higher level of abstraction built over the network operating systems, by offering fault

tolerant resource sharing, and by masking out the problems to facilitate heterogeneity, stability and

efficiency of distributed systems within the ISO/OSI Reference Model. On the other hand, the

context-aware middleware, see Figure 2.5, defines an abstract layer between running the operating

system and the applications in software systems. It aims at dealing with the heterogeneity of physical

world through edge technology connections by adding more specialized mechanisms and services

than an operating system provides. It is capable of wrapping (i.e., controlling physical devices and

interacting with them to receive data), analyzing and delivering the physical world information (e.g.,

edge technologies such as sensor networks, embedded systems, RFID or NFC tags) to the application

services in a transparent way. Transparency provides the application layer the ability to separate

from the internal scope of the middleware and not to interact with the implementation of the lower

layers directly; thereby, the application receives the context but does not know the source of the

context. In other words, the middleware creates a shielded interface by both enhancing the level of

abstraction support needed by the application and intending to hide lower layer operations between

the physical layer (i.e., hardware) at the bottom and the application layer (i.e., abstract) at the

top. Having a middleware allows the computational burden required for context management to

shift from the application to the middleware itself by letting the application developer only deal
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with implementing the application logic, and by also letting the application control the entities

(i.e., the characterized context) created after context management. Thus, the middleware also

allows having robust optimization opportunities within the consideration of system constraints (e.g.,

relative computational cost associated with entity relevant operations, limited battery power, and

insufficient information storage). Most importantly, assigning a middleware takes the responsibility

of all context relevant entity management, and provides a complete global access into common

resources needed by all applications residing on the same host without any conflict [56–58].

An entity could be anything such as an activity, person, place, object or time that appli-

cation users interact with. Therefore, it has already noted that the context describes a physical

phenomenon in real world environment, whereas the entity describes its projection in cyber world.

Moreover, context-awareness in a system allows understanding the context information and using

it with its own benefit. By integrating context awareness into the middleware technologies, it must

have the capability of recognizing and interpreting the context, characterizing it with entities, al-

lowing interactions among entities and operating the whole system under such conditions where an

adaption may require. At this point, the adoption of a term called semantic metadata is defined at

a high level of abstraction to represent context as the structure and meaning of entities, and also to

present context relevant adaptation strategies, which allows the middleware be suitable to behave

dynamically with a minimal human intervention. Having semantic metadata allows for unambigu-

ous specification of context models and lets the knowledge to be shared among entities with no

loss of meaning. Thanks to its interoperability and openness, it also allows to infer other complex
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knowledge at the upper layers in presence of other semantic metadata. However, the complexity of

context resources in heterogeneous physical world and the interactions among the diverse context

resources, make it difficult to describe the relevant metadata explicitly [59].

Other properties supported by the context-aware middleware technology, seen in Figure 2.6,

can be defined as follows:

• The context-aware middleware either runs standalone for managing entire physical envi-

ronments or accepts the existence of an infrastructure, which can deliver required services.

This differentiation stems from the diversity caused by the heterogeneous sensing envi-

ronment.

• The middleware has a reflective property which represents the obtained entities through

context as semantic meta-data. The meta-data may belong to the application, the mid-

dleware itself, context, or interconnected (i.e., composition). Note that a context can

differ (e.g., asynchronously obtainable over different sensor), and inter-operate with other

contexts. The reflection allows the middleware to regulate its computations and monitor

possible changes in the semantics. It also allows the middleware to model itself through

self-representation such that the manipulation of its behavior may be changed. Hence,

any change occurred at the meta-level can affect the underlying base level or vice versa.

• Adaptation is an important design merit in ubiquitous sensing which empowers users to

customize systems according to individual preferences. Hence, the adaptation in ubiq-

uitous sensing is defined by an autonomous process triggered by a set of requirements
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ruled by the ubiquitous computing paradigm, in order to improve quality of service at

application layer. This paradigm intends to sense the physical world, reason the obtained

context, and react dynamically towards the changing context by reconfiguring its behavior

accordingly. The paradigm also supports proactive adaptation, which describes the ability

of envisioning future application requirements caused by the context change as well as ad-

justing the functionality accordingly to prevent or minimize direct application interaction

with neither interfering nor modifying the application logic. In contrast, an application

itself has the ability to altering its functionality with respect to context changes in reactive

adaptation.

• The middleware can constitute entities from physical/virtual contexts for the sake of

general usage requested by all types of applications, and it can provide specific information

delivery for an application (i.e., service provider).

• The middleware must run smoothly with the underlying operating system. Since mobile

applications run on resource limited devices with low memory size, slow CPU frequency,

and low power supply, the light-weight middleware systems need to be considered in order

to impose light computational load.

2.6 Context-Aware Applications

New generation mobile phones are now equipped with sophisticated sensors. The cameras on

mobile phones can be used as video and image sensors; the microphone on the mobile phone used for

voice conversations, and an acoustic sensor; and the embedded GPS receivers on the mobile phone

can provide location information. Other embedded sensors such as gyroscopes, accelerometers, and

proximity sensors can collectively be used to determine users physical activities. Moreover, additional

sensors can be easily interfaced with the phone via wireless or wired connections to sense various

context obtained for medical applications or activity recognition applications.

In this section, context-aware applications are categorized according to the application de-

sign field, see a generic Figure 2.7 for context-aware computing. The categorization begins with

some examples to create a general framework design which tries to provide middleware services em-

bracing all type of sensory operations. The rest of categorization continues by introducing different

application fields that researchers have been studying extensively.
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Figure 2.7: Context-aware computing

2.6.1 Studies for Creating ‘A Generic Framework Design’

The pervasive mobile computing, which captures and evaluates sensory contextual infor-

mation in order to infer user relevant actions/activities/behaviors, has become a well-established

research domain. Most studies rely on recognition of user activities, especially posture detection,

and the definition of common user behaviors by proposing and implementing numerous context mod-

eling systems. In addition, researchers have been aware of the need for computational power while

trying to infer sensory context accurately enough. However, most works provide partial answers to

the tradeoff between context accuracy and battery power consumption. It is hard to say that power

saving strategies have been significantly taken at the low-level physical sensory operations. Above

all, there is no a generic framework implemented in context aware applications to apply adaptively

changing dynamic sensor management scheme. In contrast, most work emphasizes, either to set a

minimum number of sensors, or to maximize power efficiency by solely applying less complexity in

computations or by changing transferring methods of obtained context to the outer network services.

From the stand point of the creation of a generic framework design for middleware services

in context-aware applications, it would be notable to mention the following studies:

• “EEMSS” in [12] uses a hierarchical sensor management strategy by powering a minimum

number of sensors and applying appropriate sensor duty cycles so that the proposed

framework could recognize user states through smartphone sensors while improving device
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battery lifetimes. Unfortunately, sensors are considered to have fixed duty cycles whenever

they are utilized, and also they are not adjustable to respond differently to variant user

behaviors. In addition, energy consumption is reduced by shutting down unnecessary

sensors at any particular time. On the other hand, classification of sensory data is based

on pre-defined test classification algorithms.

• The hierarchical sensor management system is also studied by introducing “SeeMon”

system in [28], which achieves energy efficiency and lessens computational complexity by

only performing continuous detection of context recognitions whenever a change occurs

during the context monitoring. The framework also employees a bidirectional feedback

systems in computations to detect similar context recognitions in order to prevent from

redundant power harvesting operations.

• Similarly, Sensay [60] is a context-aware mobile phone, but the form of an external sensor

box which is mounted on the users hip area, it receives many different sensory data and

eventually determines to dynamically change cell phone ring tone, alert type and un-

interruptible user states. However, it classifies user state offline and the system does not

have energy efficiency strategy.

• “Darwin” studied in [40] proposes a system that combines classifier evolution, model pool-

ing, and collaborative inference for mobile sensing applications on phones. It is imple-

mented for a speaker recognition application by using efficient but sophisticated machine

learning techniques; however, there is no power consideration applied.

• “Jigsaw” presented in [61] is a continuous sensing engine for mobile phone applications,

which balances the performance needed by an application and resource demands. The en-

gine employs each sensor under a processing pipeline. It performs all the sensing and clas-

sification processing exclusively on the mobile phone, and it uses sensor-specific pipelines

that have been designed to cope with the individual challenges presented by each sensor.

Duty cycling techniques are attached as an adaptive pipeline process if applicable in order

to conserve battery life.

• The study in [62] creates a general framework problem under an energy efficient location

based sensing application. It is noted that there are four critical factors affecting energy
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efficiency in location-sensing through GPS. These factors are the static use of location

sensing mechanisms, the absence of use of power-efficient sensors to optimize location-

sensing, the lack of sensing cooperation among multiple applications, and the unawareness

of battery level. The middleware solution is given by introducing substitution to find an

alternative, but as a less power consuming location-sensing mechanism, suppression uses

less power consuming sensor than GPS when user location is static; piggybacking used to

synchronize with other location-based applications to infer a collaborative location info,

and adaptation to adjust system parameters such as time and distance longer when battery

level is low.

There are also some studies proposed in [23, 36] in order to providing comprehensive solu-

tions into creating a base framework for context-aware applications.

2.6.2 Studies for ‘Human Activity Recognition’

Recognizing human-centric activities and behaviors has been an important topic in pervasive

mobile computing. Human Activity Recognition (HAR) intends to observe human related actions in

order to obtain an understanding of what type of activities/routines that individuals perform within

a time interval. Thereby, providing accurate information about HAR’s relevant data history could

assist individuals in having a better well-being, a fitness level and a situational-awareness [63–65]. For

example, patients with diabetes, obesity, or heart disease are suggested to follow a predefined fitness

program as a part of their treatment [66, 67]. In this case, the interested information regarding

human postures (lying, sitting, standing, etc.) and movements (walking, running, etc.) can be

inferred by the HAR system in order to provide useful feedbacks to the caregiver about the patient’s

behavior analysis. In addition, by the attachment of external sensor devices, e.g., Heart Rate (HR)

monitor, patients with abnormal heart beats can be tracked easily and notified to caregivers in case

of emergency in order to prevent undesirable consequences [68]. In practical, HAR has only interest

on single person activity detection; however, it can be extended to be a multiple person recognition,

which is called Activity of Daily Living (ADL). ADL is a way to describe the functionality status

of a person and its interaction with others. Hence, ADL becomes an essential part in the area of

community sensing, especially for community health-care concerns (e.g., finding stress level in a

group of people [69]).
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Table 2.3: HAR in mobile devices

Reference Platform Sensors
[6, 12, 32, 36, 37, 40–42, 47, 49] Smartphone ACC, BP, BT, GPS,

HR, MIC, Prox.,
Temp., Wi-Fi

[29–31, 33, 51, 53] Wearable Devices
[28, 31, 34, 35, 44, 45, 51–53] Mobile Development Boards or PC

ACC: Accelerometer; BT: Bluetooth; MIC: Microphone; HR: Heart Rate Monitor; Prox.: Proximity; Temp.: Temperature

Studies for HAR can be divided into sub-categorizes based on the platform a context-aware

system is built on (see Table 2.3):

2.6.2.1 Smartphone Based

Activity recognition basically concerns about human beings and/or their surrounding en-

vironment. The constant monitoring of activity recognition was used to carry out by deployment

of cameras with high cost or by personal companion devices with no easy use. In addition, the

aggregation of monitored data was very complicated and impractical. However, the increasing de-

velopment in sensor technologies and deployment of small-sized sensors within the mobile devices

(e.g., the accelerometer, proximity sensor, magnetometer, GPS and etc.) along with the fact that

these devices are carried by people throughout the day makes new generation mobile devices (e.g.,

smartphones) appear to be an ideal platform to be used with the purpose of human-centric sensing

applications. The accelerometer sensor, which can return a real-time measurement of acceleration

through all coordinate spaces, is commonly used for HAR due to that fact. It is employed either as a

pedometer to measure steps counts and a total calorie consumption or as a monitor to recognize user

physical activities such as postures and movements. Most of the measured events/actions/attributes

are generally related to the human posture or movement (e.g., using accelerometers or GPS/Wi-

Fi/Cell Tower), environmental variables (e.g., using temperature and humidity sensors, microphone

and cameras), or physiological signals (e.g., attachment of external devices such as heart rate or elec-

trocardiogram, finger pulse, etc.). In this aspect, there are many studies, refer Table 2.3, proposing

to use smartphones to monitor users’ daily physical activities according to their lifestyles.

2.6.2.2 Wearable Sensors Based

Wearable sensors, i.e., multiple-sensor multiple-position solutions, have been put forward

in order to recognize complex activities and gestures within the HAR concept. It essentially intro-

duces multiple-sensor placements on multiple locations of a human body to well capture specific
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target activities (e.g., brushing teeth, arm and wrist movements while folding laundry, etc.), which

a smartphone cannot detect by itself. With the usage of wearable sensors, the sensory context is

extracted from miniature sensors integrated into garments, accessories, or straps. Especially, the

traditional accelerometer based HAR solutions cannot provide activity recognitions at finer granu-

larities for the differentiation of some postures such as sitting and lying down since there are some

drawbacks observed such as mis-adjustment of the device orientation and position, or insufficient

number of sensors to have enough spatial information. Hence, wearable sensors with the utilization

of heterogeneous sensors have been an active research area in order to respond a growing demand

for HAR systems in the health care domain, especially elder care support, assisting the cognitive

disorders, and fitness and well-being management [29, 52, 53].

A smartphone can be used as a center position for external sensor attachments. Heteroge-

neous sensors are connected to each other and the smartphone with a wired/wireless communication

(mostly Bluetooth). Proximity sensors decide the distance between sensor nodes (i.e., topology of

sensor placement) by measuring the received signal strength indication (RSSI) of radio frequency

in dBm. On the other hand, the deployment of heterogeneous sensors entail high cost and brings

about some constraints in computations, since it requires intensive supervised learning based clas-

sification algorithms, which are mostly carried out in offline analysis and hence give an impractical

solution. The constraints may also stem from sensor degradation, interconnection failures, and jitter

in the sensor placement. Therefore, the reduction of sensor dimension is highly important for node

interconnection, which makes the system stay unobtrusively.

2.6.3 Studies for ‘User Tracking: Transportation Modes and Location Info’

Location-based sensing [70] aims at tracking people over a period of time by recognizing their

activities in terms of specifying transportation modes (e.g., walking, running, vehicle etc. when a

user is outside) that they engage with as well as by discovering common places that they would

like to visit. After the integration of GPS receivers into smartphones, the data collected by GPS

becomes handy for network connected applications. Thereby, GPS is employed as an instrument

in these applications in order to inspect for the habits and general behaviors of individuals and

communities [71–73].

Investigation of mobility patterns in extracting places and activities from GPS traces have

been generally implemented in a hierarchical structure [72–74]. According to the structure, the
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lower level begins with the association of GPS traces with street maps, and the structure rises up

by inferring and modeling activity sequences; and eventually, the structure ends up with discovering

significant places from activity pattern. By taking a log of recent history of transportation modes

of individuals throughout the daily life as well as mapping their location history, a general physical

activity report can be documented, and also the goals of future activity plan can be reconfigured

with the purpose of the health and fitness monitoring. For instance; from physiological perspective,

driving behaviors are investigated in [75] by taking a consideration of trip destinations, trip times

and driving efficiency.

The localization is inferred by GPS delivered speed and location information together with a

large amount of a priori data (e.g., street maps). GPS provides 2D data by setting a resolution value

(e.g., generally 10 m) per a certain distance within two successive data points (i.e., unit difference).

Hence, the consecutive GPS readings are grouped based on their spatial relationships in order to

create distinctive segmentations among GPS traces. Then, GPS traces are associated with available

street maps, which are represented as directed graphs where an edge represents a street and a vertex

represents the intersection of streets.

GPS cannot penetrate through walls, and thereby the received data gets degraded. Thus,

the usage of GPS for location-based sensing is valid for outdoors. Once GPS times out because of

the lost satellite signals, Wi-Fi scan is performed for indoors by checking for wireless access points

around. Wi-Fi could be used for outdoors as well if applicable since it covers a range of 20-30 m

as radius. Actually, smartphones apply a hybrid localization scheme by using GPS with network-

based triangulation by leveraging wireless access points for achieving coarse positioning [76]. The

network-based triangulation collects information through RF signal beacons from reachable wireless

cell towers or Wi-Fi access points or even Bluetooth which is not effective due to the short-distance

usage and limitations in data throughput but could be used indoor environment in presence of

multiple users around. The received RF signal strength is used to measure a relative distance

through the physics of signal propagation among network nodes (e.g., utilization of local and mobile

base stations). Hence, by measuring sequential RSSI data, user related transportation modes can

be identified. In addition, during the Wi-Fi scan, the MAC address (i.e., BSSID) of wireless access

points might have already been tagged as a point of interest, which yields to retrieve location info

automatically that user is in a familiar environment (e.g., office, home, gym etc.). Although GPS

could detect some postures such as sitting or standing, the accelerometer sensor is rather used for
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such static activities due to GPS may not provide a concise solution for differentiation of user state

classes at similar speed. Besides, the inefficiency in power consumptions would be more healed in

case where the accelerometer sensor is used.

Location-based sensing could also take place within the concept of community sensing by

monitoring highways for real-time traffic conditions, and by forecasting probabilistic traffic conges-

tions, thereby it would be possible to re-route the traffic flow. [74, 77–79]. This scenario can also be

applied into biking [80, 81]. Bikers can share their routes to demonstrate the noisiness of the bike

trails, and also to take ride statistics for a fitness log. Besides, the most significantly, the crowdedness

level of metropolitan areas can be investigated in terms of daily visitor density [82, 83]. Unfortu-

nately, some concerns such as privacy, security and resource considerations limit the expansion of

location-based sensing applications since cyber-stalking [84] by tracing the revealed user locations

could harm users by economically, physically, and legally. In the absence of the relevant concerns,

some websites/applications such as [85] can be widely used and would help more in assisting people.

2.6.4 Studies for ‘Social Networking’

The ever-increasing ubiquity of Internet usage has enable people to exchange innumerable

different form of information at a global scale. This situation has resulted in explosive growth in

the creation of social network platforms (e.g., Facebook, Twitter etc.) where people can describe

and share their personal interests and preferences. With the emergence of smartphones equipped

with sophisticated sensors, the integration of smartphones and social networks have leveraged the

data collection capability and leaded the born of exciting context-aware applications as well as

the evolution of the Internet of Things. However, the question of how the inference of a human

relevant context can incorporate with social network platforms in an autonomous way is still the

most exciting research topic in the area of ubiquitous sensing. In this sense, the researchers have been

trying to create context-aware systems where diverse large data streams (e.g., image, video, user

location, user transportation mode) are automatically sensed and logically fused together with the

purpose of social interaction amongst individuals or groups of people. The corresponding research

is called crowdsensing or crowdsourcing. “CenceMe” [86] is the foremost study which is able to infer

user relevant activities, dispositions, habits and surroundings, and then to inject these information

into social networking platforms. The fusing of social, sensor, and social data for context-aware

computing is also studied in [87, 88]. A detailed study for the current evolution and future challenges
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of the crowdsensing is given in [89, 90]. In addition, some exciting futuristic project ideas can be

examined through www.funf.org.

2.6.5 Studies for ‘Healthcare and Well-being’

With the advancements and increasing deployment of micro-sensors and low-power wire-

less communication technologies within the Personal/Body Area Network (PAN/BAN), the studies

conducted under ubiquitous computing have grown interest in the healthcare domain. Besides the

high demands for applying and understanding HAR based systems, the integration of monitoring

and analyzing vital sign data (e.g., heart rate, blood sugar level and pressure level, respiration rate,

skin temperature, etc.) through sensors also more likely enable to change assessment, treatment and

diagnostic methodologies in healthcare domain since the traditional methodologies have been based

on self-reports, clinic visits and regular doctor inspections [91].

With the integration of these emerging technologies in the healthcare domain, the sensor-

enabled autonomous mobile devices can help caretakers continuously monitor patients, record their

wellbeing process, and report any acute situation in case where abnormal condition is detected.

Thereby, it would be more easier and efficient to monitor and manage the lifestyles and well-beings

of the patients with chronic diseases, the elderly people, the rehab taking patients, the patients

dealing with the obesity, the patients with cognitive disorders, children. It would be even more

significantly to monitor and rescue the emergent vitals and status notifying soldiers in the combat

zone.

The home-based health care monitoring by mobile based devices is defined under smart home

applications. The studies in [92–94] are carried out in order to create a smart home environment for

treatment procedures of patients (e.g., having cardiac problem [95], or diabetics). The studies are

based on collecting data through different wearable physiological sensors (e.g., body temperature,

heart rate, blood pressure, blood oxygen values, respiration level, and ECGs) and also reporting feed-

backs remotely to the healthcare givers. The wearable sensors including accelerometers, heart rate

monitors and many others have been also studied in [96–99] in order to recognize activity patterns

while measuring fitness level and discovering frequentness of body movement against obesity and

weight loss programs [100], diagnosing insidious diseases (e.g., hypotension) [101], and understand-

ing emotional states (e.g., stress level) [102, 103]. Besides, smartphones can be used as a reminding

systems [104] for aging related cognitive disorders such as Alzheimer treatment. Also, like indicated
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in a well-known study, UbiFit [105], smartphone can capture user relevant physical activity level

and correspond the obtained information to personal fitness goals by presenting feedback reports

back to the user.

There are many commercial products available at the market to give ubiquitous computing

solutions in the healthcare domain. These products mostly focus on assisting people by controlling

dietary programs/weight management, discovering fitness level, measuring burnt calorie or energy

level, counting step numbers, and recognizing activities. Philips Directlife, FitBit Zip and Body-

Media GoWear are some devices produced for tracking activity patterns, counting steps, measuring

calorie burnt, and calculating distance traveled. In addition, Impact Sports ePulse proposes heart

pulse monitoring system. Many other products can also be found for measuring heat flux, galvanic

skin response and skin temperature.

2.6.6 Studies for ‘Monitoring Environment’

Environmental monitoring, on one hand, aims at sensing and collecting information about

the surrounding environment by basically providing a personalized environmental scorecards at the

human level; on the other hand, it creates an impact toward environmental exposure by contributing

solutions to environmental solutions at the community level. The surrounding environment is either

a small scale area (e.g., indoor) or a large one (e.g., outdoor). For indoor environments, applications

to monitor HVAC systems and building maintenance are studied [106, 107]. For instance, one

can use a smartphone to measure the temperature inside a room, and then the smartphone can

adjust the heat, cool, or ventilate automatically in order to change air balance in a smart home

environment. On the other hand, it would be more reasonable to apply environmental monitoring in

the context of community sensing. The studies in [108–114] provides applications for environmental

monitoring to track and notify the hazardous exposure in the environment, such as carbon emission

level, air pollution, waste accumulation, water intoxication level etc. In addition, noise pollution and

ambiance fingerprinting (fusion of sound, light and color) are other topics that have been studied in

this content [115, 116].

2.6.7 Studies for ‘Auxiliary Toolkits for Context Inference’

As mobile phone sensing becomes richer and more sophisticated, the obtained context

through sensors becomes more complex and challenging to reason into an inference. Therefore,
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context-aware applications needs mobile classifier development tools, such as “Kobe” [117],“WEKA”

[118], and “The Context Toolkit” [119] in order to deal with low-level context acquisition from raw

sensory and to infer high-level semantic outcomes data while exhibiting efficient utilization among

available resources and achieving an optimal balance among energy, latency and accuracy tradeoffs.
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CHAPTER 3

CONTEXT INFERENCE: LIGHT-WEIGHT ONLINE UNSUPERVISED POSTURE
DETECTION BY SMARTPHONE ACCELEROMETER

The understanding of human activity is based on the discovery of the activity pattern and

accurate recognition of the activity itself. Therefore, researchers have focused on implementing

pervasive computing systems in order to infer activities from unknown activity patterns, which

are called the extracted context by mobile device based sensors. The existence and awareness of

the context provides the capability of being conscious of physical environment or situation around

mobile device users, and makes network services respond proactively and intelligently based on

such awareness. Especially, the ever-increasing technical advances in embedded systems, together

with the proliferation of growing development and deployment in MEMS technologies, have enabled

smartphones to be re-purposed in order to recognize daily occurring human based actions, activities

and interactions which mobile device users encounter with surrounding environment. It is believed

that recognizing human related event patterns, called user states, accurately enough could give

a better understanding of human behaviors, and also more significantly, could give a chance for

assisting individuals in order to enhance the quality of lives. Therefore, the inference of a vast

variety of human activities in a computationally pervasive way within a very diverse context acquired

by a series of sensory observations has drawn much interest in research area of ubiquitous sensing.

However, the evolution of the ubiquitous sensing on the resource-constrained mobile devices in terms

of battery power, memory and bandwidth have empowered Cyber-Physical Systems (CPS) [120] to

emerge as a promising solution for the dynamic integration of highly complex and rich interactions

among the modeling computational virtual world and the exploiting heterogeneous physical world.

In this sense, many studies have been done to detect the user centric postural actions within

the concept of Human Activity Recognition (HAR) [29, 31, 34, 121–124] using accelerometers, Wi-

Fi, GPS or other smartphone sensors. Note that the smartphone accelerometer is solely studied for

HAR based analysis in this chapter, which makes the analysis more challenging due to the lack of
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multiple sensory data fusion, and also having easily distorted signals with respect to the orientation

of smartphone.

Hidden Markov Models (HMMs) [125–127] or AutoRegressive (AR) models [45] are the

foremost methods amongst statistical tool based classification models to detect user related physical

activities by exploiting the context obtained via wearable or built-in mobile device sensors. However,

these studies mostly allow predefined and user-manipulated system parameter settings, such as

arbitrary formation of state transition matrix in HMMs, or build filtering coefficients in ARs which

is not suitable for online processing due to the increasing computational workload while enlarging

data size.

On the other hand, most studies rely on creating feature vectors at first to exploit signal

characteristics of sensory data, and then classify these vectors according to specific data classes. A

feature vector consists of many signal processing functions starting from mean, standard deviation,

correlation to frequency and wavelet transform models [30, 51, 52, 128]. After creating a high

dimensional feature vector, pattern recognition algorithms are applied to find out the hidden context

inside the feature vector. The major drawback of these algorithms stems from an offline decision

process, which is carried out as follows: First, all sensory observations are recorded; second, feature

vectors are constructed by partitioning data records with a predefined window length; third, the

selection of default feature vector for specifying a training data class is user-manipulated, which

means the feature vector is extracted from a specific (e.g., visually observed) window of full recorded

data; the final step is called testing to use a template matching algorithm by mapping instantly

constructed feature vectors into default feature vectors. Pattern recognition techniques for clustering

diverse data classes, such as k-means [41], k-Nearest Neighbors (k-NN) search [42], Support Vector

Machines (SVMs) [45], are involved in this final step in order to infer the context. Unfortunately,

the given clustering techniques might not be efficient while processing large data clusters and also

SVMs cannot deal with multi-class classification directly. The multi-class classification problem

is usually solved by decomposition of the problem into several two-class problems. Furthermore,

pattern recognition toolkits such as WEKA [118] are also used to obtain classification results [26,

129].

Towards this end, this chapter proposes an online solution which intends to perfectly ex-

ploit acceleration signals within the fast Decision Tree (DT) classifiers without setting any prede-

fined/fixed thresholds over any specific acceleration spaces in order to differentiate user activities
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such as sitting, standing, walking, and running. The proposed classification method provides the

following properties, which also make this chapter differ from some studies [34, 45, 47, 52, 123, 124]

under a similar name:

• unsupervised learning : no priori information, no fixed thresholds, no initial training data

classes;

• adaptive: robust solution to a changing orientation of the device;

• light-weight : efficient tree-based classification by applying sufficient signal processing tool-

box: no redundant computational workload;

• online: instant context inference;

• assisting : working standalone and/or assisting other classification algorithms by creating

training data classes or input matrices;

• updating : computational efficient update/add/delete process on training data classes.

This chapter also enhances some widely used supervised classification methods using Gaus-

sian Mixture Models (GMM), k-NN, Linear Discriminant Analysis (LDA) for online processing by

providing training data classes without a prior offline process as well as supporting the observation

analysis defined in statistical based tools such as HMMs.

The whole system structure is described in Figure 3.1. According to the structure, a sequence

of sensory data is collected by a sliding window. To be able to infer the hidden context (i.e., user

states: sitting, standing, walking and running) inside the sequence, there are two modes suggested:

standalone or assisting mode. Standalone mode uses the proposed classification algorithm. The

proposed classification method provides a light-weight, online and unsupervised context inference

solution by using a sufficient number of statistical/signal processing toolbox functions. It also both

produces prior information, which is training data classes or system matrices, to represent user states

and decides feature extraction functions to be used in assisting mode. Note that assisting mode is

enabled after standalone mode finishes the class definitions for user states since the supervised

learning based classification algorithms are employed in assisting mode. Assisting mode receives the

sensory data sequence as input as well as having the prior information provided by the standalone

mode. The input undergoes a feature extraction process, whose functions are already defined by
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Figure 3.1: The proposed system structure for user state classification: standalone or assisting modes

standalone mode, in order to build a corresponding feature vector. Note that additional features can

be added into this process. In presence of feature vector and prior information, context inference

is made by diverse classification methods such as GMM, k-NN, LDA, or by statistical tool based

HMM. In addition, another powerful property provided by the structure is to be able to update prior

information dynamically in a computational efficient way for online processing whenever standalone

mode makes a solid differentiation in user states; thereby, adaptability can be satisfied toward

changing user behavior profile or sensor signal characteristics.

The whole system structure is described in Figure 3.1. According to the structure, a sequence

of sensory data is collected by a sliding window. To be able to infer the hidden context (i.e., user

states: sitting, standing, walking and running) inside the sequence, there are two modes suggested:

standalone or assisting mode. Standalone mode uses the proposed classification algorithm from

this chapter. The proposed classification method provides a light-weight, online and unsupervised

context inference solution by using a sufficient number of statistical/signal processing techniques.

It also both produces prior information, which are training data classes or system matrices, to

represent user states and decides feature extraction functions to be used in assisting mode. Note

that assisting mode is enabled after standalone mode finishes the class definitions for user states since

the supervised learning based classification algorithms are employed in assisting mode. Assisting

mode receives the sensory data sequence as input as well as having the prior information provided by

the standalone mode. The input undergoes a feature extraction process, whose functions are already
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Table 3.1: Summary of important symbols in chapter 3

Symbol Definition (Section where the symbol is first used)
{x, y, z} the accelerometer sensor readings (i.e., three-axial info) (3.1)
i, j indexes for the accelerometer axes (3.1)
u, t time indexes (3.1)
L the length of sliding window (3.1)
f active sliding window at current time (3.1)
fp previously active sliding window (i.e. L/2 samples earlier) (3.1)
x feature vector (3.2.1)

s, s∗, ś indexes for user state classes (3.2.1)
n,m indexes for a data point in a class/feature vector (3.2.2.1)
W feature projection matrix (3.2.2.3)
y feature projection vector (3.2.2.2)

µ,m mean values (3.1)
σ standard deviation (3.1)

Λ, S covariance matrices (3.2.2.3)
A,B between and within class scatter matrices (3.2.2.3)
a, b user state transition and observation matrices (3.2.3)
n, ń the number of samples (3.2.2.3)

defined by standalone mode, in order to build a corresponding feature vector. Note that additional

features can be added into this process. In presence of feature vector and prior information, context

inference is made by diverse classification methods such as GMM, k-NN, LDA or HMM. In addition,

another powerful property provided by the structure is to be able to update prior information

dynamically in a computational efficient way for online processing whenever standalone mode makes

a solid differentiation in user states; thereby, adaptability can be satisfied toward changing user

behavior profile or sensor signal characteristic.

3.1 Standalone Mode: The Proposed Novel Classification Method

Accelerometer sensor retrieves three-axial acceleration data {x, y, z} at each sampling time.

Sensory readings are collected by a sliding window with a length of L and an overlap value of 50%.

The length of windowing is an important design merit. The shorter windowing cannot seize the

activity pattern properly, whereas the wider windowing would create a latency in detections and

puts additional workload in computations. In addition, the overlap value is important as well to

detect user state transitions in activity pattern.

The window at current time is called “active frame”, and it is denoted by f{x,y,z}(τ) where

τ ∈ [t−L+1, t] and t is the time index and L is the total number of samples for each axis. Hence, in

case where L/2 number of new samples inserted into the frame due to the overlapping, the proposed

classification method begins to operate by receiving inputs as shown in Figure 3.2. The inputs are

considered as two data sets: the active frame and the previously active frame, which is denoted as,

fp{x,y,z}(τ) where τ ∈ [t− 3L/2 + 1, t− L/2], superscript p represents for “previous time frame”.
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Figure 3.2: The proposed decision tree based classification method: standalone mode

For the preprocessing, a noise cancellation filter, e.g. a LMS filter, could be used before any

signal processing technique is applied in order to reduce possible distortion over sensory readings.

However, the proposed method would show that it can still produce valid results with/without the

noise effect.

The applied method begins with normalizing each axis into unit power in order to ana-

lyze signals over the similar base (e.g., f̂x = fx(t)/

(√∑t
τ=t−L+1 fx(τ)

)
), and then taking cross-

correlations among acceleration axis pairs in the active frame,

Rij(u) =


∑L−u−1
τ=0 f̂i(τ + u)f̂j(τ), u ≥ 0

Rij(−u), u < 0,

(3.1)

where u and τ time indexes, i, j ∈ {x, y, z} and i ̸= j.

If high correlations are obtained among axis pairs, max{|Rij |} > ε where ε ∈ [0.75, 1], user

state is identified as either sitting or standing. Otherwise, it is notified that user state could be either

walking/running or be in transition. Note that the applied method seeks for the highest correlations

at first for specifying a starting reference point, which defines a training data frame for the relevant

user state, so that the learnings from future sensory samplings will be more accurate. Generally

speaking, experiments show that |Rxy| mostly satisfies a highest correlation; whereas, |Rxz| and
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Figure 3.3: Euclidean distance analysis: user state ’sitting’ is the reference point

|Ryz| do not. Also, the training data frame of each user state can be updated whenever a clear

classification result is obtained for the classification of corresponding user state.

Figure 3.3 gives the information of how user states occupy the Euclidean space. By analyzing

the figure which consists of three-axial acceleration data recorded through ten minutes at 100 Hz,

user state sitting can be differentiated from other user states easily over the Euclidian space by

assigning a data set of user state sitting as the reference point, while the similar conclusion cannot

be made that easy for user states standing, walking and running. In other words, these three user

states can be put in a same group in comparison with user state sitting.

The differentiation between sitting and standing relies on Euclidean distance analysis among

three-axial accelerations since relevant data samples for these two user states are scattered distinc-

tively over the coordinate spaces. The Euclidean distance between two random points h and q on a

coordinate space is given by |hq| =
√
(hi − qi)2 + (hj − qj)2 where i ̸= j. Hence, pairwise Euclidean

distance vectors between the active frame and the training data frame through each three-axial

accelerations are calculated.

After that, a radius r is defined for the training data frame which belongs to the recent

recognized user state. Since the dispersion in accelerations would be distinctive to select a proper
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user state, the variance values of accelerations must be taken into account in order to see how far

sampling points within the training data frame is spread out from the mean. Thus, the magnitude

(i.e., the norm) of a vector containing standard deviation of each axis gives out a required radius:

r =
√∑

σx2 + σy2 + σz2. Note that the geometric mean of standard deviations could also be used

for defining the radius, r = 3
√
σxσyσz.

In order to identify user state “sitting” from “standing” in presence of Euclidean distances

and the defined radius, a distance based learning function is used for clustering user states. Range

Search algorithm (i.e., Fixed-Radius Near Neighbors [130]) is implemented for this purpose. This

algorithm finds all points inside the pairwise Euclidean distance vectors within a radius r centered

at the mean. By applying a brute-force approach, given the set H and a distance r > 0, all pairs of

distinct points h, q ∈ H such that |hq| ≤ r is found. In addition, the radius needs to be smoothed

whenever a new radius value becomes available in case where a perfect correlation satisfied among

axes so as to have a better spreading circumference.

The points which stay in and out of radius r are considered to create a separation in relevant

user state detections. However, to this end, the proposed method does not know yet which user

state is sitting or standing due to the placement, i.e., orientation, of the smartphone. The absolute

decision will be made whenever user state walking/running is recognized since user state standing

lies over almost the same signal level that user state walking/running does.

Note that instead of Range Search algorithm, SVMs could be another choice to differentiate

two user states from each other by using linear discrimination. SVM denotes two user states as

binary data classes. The objective is to create a hyperplane which sets a rigid margin among

data classes to achieve an optimal linear distance separation. The hyperplane wTx + w0 is either

≥ class{+1} or < class{−1} where w and w0 are defined as weight and bias respectively. The

hyperplane boundary satisfies wTx + w0 = 0 for a data point x.

On the other hand, in case where correlations observed among axis pairs by (3.1) are not

sufficient, i.e., max{|Rij |} < ε where ∀i and i ̸= j, the integrals of both zero-mean versions of

the inputs are taken to check if both inputs are on the same signal level. Range Search algo-

rithm is also applied for this purpose by receiving the absolute values of the both integral re-

sults, |Σtτ=t−L+1(τ − (t− L))(fi(τ)− µfi)| and |Σt−L/2τ=t−3L/2+1(τ − (t− 3L/2))(fpi (τ)− µfp
i
)| where

i ∈ {x, y, z} and µ is the mean. In addition, a radius for the algorithm is defined by the geometric

mean of integral results belonging to fp, 3

√∏
∀i |Σ

t−L/2
τ=t−3L/2+1(τ − (t− 3L/2))(fpi (τ)− µfp

i
)|. If the

41



www.manaraa.com

signal level is similar for both inputs, user state becomes either walking or running. Otherwise, user

state is in transition, thereby the previous user state is taken as the current user state.

To differentiate “walking” and “running”, it would be a reasonable start to take the first

order differentiation of the relevant acceleration samples in order to better exploit the contextual

information since these user states exhibit more frequently changing variations in acceleration data.

For this purpose, the first order regression coefficient is defined by

ḟi(t) =
(fi(t+ 1)− fi(t− 1)) + 2(fi(t+ 2)− fi(t− 2))

2(12 + 22)
. (3.2)

The given regression coefficient is mostly introduced in speech signal recognition systems

[131, 132] to provide a temporal information about the pitches in speech signals in order for accuracy

enhancement.

The next step is to extract the mean absolute deviation (MAD) of the differentiated sensory

samplings so as to discern how far the points can reach.

(MAD)i =
1

L

t∑
τ=t−L+1

|ḟi(τ)− µ̇i|, (3.3)

where µ̇i is the mean value of the modified acceleration instance (3.2) for any axis. Then, Range

Search algorithm is also applied on points obtained from (3.3) to differentiate user states walking

and running. When the differentiation completes, the user state which has a bigger geometric mean

of all three relevant values as in (3.3) is marked as running; other one then becomes walking.

{x} =
[
|µ{x,y,z}|, σ{x,y,z},max{|Rxy|},max{|Rxz|},max{|Ryz|},Θslope

{x,y,z}, (MAD){x,y,z}

]
(3.4)

It has been already remarked the conditions in which user state would be in transition. The

recognition process where user state just goes into or exits from a transition would yield to have a

false truthfulness even though the cross-correlation analysis gives the opposite results by showing

high correlations. In such cases, the slope of the active frame needs to be calculated. The relevant

slope information is given by

Θslope
i = arctan

{ 4
L

∑L
l=3L/4+1 fi(l)−

4
L

∑L/4
l=1 fi(l)

2

}
, (3.5)
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which basically takes the first order difference of the means of the last and the first 25% portions of

the active frame.

According to the retrieved slope information from (3.5), low angles show that user state

occurs at a same signal level, whereas high angles show that user state transits into another one.

Basically, having low angles shows the evolution of the active frames still lies in the range of |µfp
i
±σfp

i
|

where µfp
i
and σfp

i
denote the mean and the standard deviation of the previously active frame. As

a conclusion, if user transition is detected, the previous user state is taken as the current user state.

In summary, Figure 3.2 organizes the user state differentiation process from the contex-

tual data and diminishes in a scope of decision tree based classification method. This algorithm

initially takes the accelerometer data stored inside the current sliding window. Then, it applies

cross-correlation function through pairs of coordinate axes in the sensory data to check for the data

consistency among the axes. If there is a high match observed among the axes, then current user

state becomes either sitting or standing after Range Search, or SVM, analysis over the Euclidean

space. On the other hand, user state could be walking, running or in transition in case where the in-

consistency occurs after the cross-correlation checks. The differences obtained from the slope and/or

integral information of two subsequent sensory data sequences reveal whether or not user state is in

transition. Low gradient in the differences reveals the sensory data has a stable continuity on the

previous signal level through axes, i.e., user state is not in transition. Finally, the differentiation

between walking and running is determined by the spreading factor of the first order regression co-

efficients of the sensory data. Accordingly, a long distance spread within the regression coefficients

indicates user state running, while the opposite indicates user state walking.

Another significant merit provided by this algorithm is that a sufficient number of functions

exploited from statistical/signal processing techniques is used for a user state classification, whereas

existing classification methods do not consider this distinction either by setting simple thresholds

over a specific acceleration axis while the phone is placed fixed, or by applying the whole feature set

required to differentiate all user states in order for only one user state recognition.

3.2 Assisting Mode: Enhancing Existing Classification Methods for Online Processing

The proposed method not only provides a standalone online solution but also assists other

classification methods by generating training data classes and/or input system matrices and by

making them prepared for online processing. In this case, each user state is represented as a template
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data class. The properties of each class are defined by signal processing functions, which is called

feature extraction. After that, whenever a new data set comes in, diverse classification algorithms

match (i.e. map) the new data set with an existing class to be able to identify hidden user state

information in the data set. This process is called classification by supervised learning method

in the study of machine learning, which allows learning the mixture parameters of the stochastic

distribution representing a data set, and also assumes that the new sample comes from a known

distribution.

In this section, the extraction of a feature vector, and how the proposed method can assist

to other existing classification methods are examined.

3.2.1 Feature Extraction

Extracting features from a given sensory data set is an effective way to identify diverse

characteristics of the data set and also to preserve class identity for each user state. In Section 2,

features such as mean, standard deviation, cross-correlation, slope, first-order differentiation, integral

and MAD have been used. There are also many other features, such as angular velocity, cepstral

coefficients, DC gain, energy, frequency-domain entropy, highest peaks of power spectrum density,

magnitude, peak-frequency, rms, variance and so on, can be found in the studies [30, 49, 51, 52, 128].

However, the ultimate goal desired for online processing is to define the dimension of feature vector

{x} as the smallest as possible. Therefore, the feature vector is constructed for existing classification

methods with the same signal processing toolbox that the proposed method in Section 2 uses: feature

vector (3.4) with a size of L = 15. Note that the proposed method does not use every features at

decision time, however existing classification methods use all of them at every time, which burdens

computational complexity in online processing.

3.2.2 Pattern Recognition Based Classification

Some widely used classification methods are introduced, and enhanced for online processing

in this section. Also note that the proposed method provides the training data classes for these

methods in a form of feature vectors.
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3.2.2.1 Gaussian Mixture Model

User state classes can be individually represented in a mixture K-Gaussian model. Any

feature vector can be drawn from this model to check for which data class encapsulates a given

specific feature vector, i.e., training data set, called clustering problem. This is also called density

problem which is defined as: given a set of N points in D dimensions, x = {x1,x2, . . . ,xN} ∈ RD,

find the probability density function, f(x) ∈ F on RD, that is the most likely to have generated the

given points.

The relevant Gaussian mixture model is given by

f(x; θ) =
K∑
k=1

q(k, n) =
K∑
k=1

pkN (xn;µk, σk), (3.6)

where n ∈ N, k ∈ K andK-components parameters are defined as θ = {θ1, θ2, . . . , θK} = {(p1, µ1, σ1),

. . . , (pK , µK , σK)} and {pk, µk, σk} are described as the mixing probability, the mean and the stan-

dard deviation of the model respectively, and also

N (xn;µk, σk) =
1

(
√
2πσk)D

e
− 1

2 (
||xn−µk||

σk
)2
, (3.7)

with the properties of
∑K
k=1 pk = 1, pk ≥ 0.

Each user state class represents a cluster which is assigned as a Gaussian model by (3.6)

with a mean approximately in the middle of the cluster, and also with a standard deviation showing

a measure of how far the cluster spreads out. Therefore, Gaussian parameters θ of each user state

class needs to be estimated.

The maximum likelihood parameters θ̂ are estimated iteratively using the Expectation-

Maximization (EM) algorithm according to the following steps:

• E Step:

p(l)(k/n) =
p
(l)
k N (xn;µ

(l)
k , σ

(l)
k )∑K

k=1 p
(l)
k N (xn;µ

(l)
k , σ

(l)
k )

, (3.8)

where p(k/n) = q(k, n)/
∑K
k=1 q(k, n) is defined as the conditional probability of the com-

ponent k given data point xn.
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• M Step:

µ
(l+1)
k =

∑N
n=1 p

(l)(k/n)xn∑N
n=1 p

(l)(k/n)
,

σ
(l+1)
k =

√√√√(
1

D
)

∑N
n=1 p

(l)(k/n)||xn − µ
(l+1)
k ||2∑N

n=1 p
(l)(k/n)

,

p
(l+1)
k =

1

N

N∑
n=1

p(l)(k/n),

(3.9)

given initial estimates of {p(0)k , µ
(0)
k , σ

(0)
k } where l is the step index,

until the logarithmic likelihood function,

λ(x; θ) =

N∑
n=1

log

K∑
k=1

pkN (xn;µk, σk), (3.10)

converges to a local maxima, which is computed by partial differentiations of λ with respect to

µk, σk, pk.

For all user state classes, the corresponding joint probability of density function (pdf) of

the mixture K-Gaussian model is finally given by

p(xn|s) =
K∑
k=1

pskN (xn;µsk,Λsk), (3.11)

where this time {psk, µsk,Λsk} denote the weight, the mean vector and the covariance matrix of the

k-th Gaussian in user state s respectively.

In the supervised learning case, the number of classes and their parameters are known.

Hence, with help of the obtained training data classes by the proposed systems, the parameters

of (3.8) and (3.9) can estimated through (6.16), and (3.11) can be derived. In the presence of a

new feature vector, the desired user state class is identified s∗ by the cluster index satisfying the

maximum likelihood (ML) estimation,

s∗ = argmax
s

{p(xn|s)}, (3.12)
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3.2.2.2 k-Nearest Neighbors Search (k-NN)

This algorithm assigns the nearest class set xm, 1 ≤ m ≤ k for the input feature vector

by defining a dissimilarity function which measures the nearness between the training data set

and the new data points in the feature vector. The dissimilarity function is generally defined by

the squared Euclidean distance d(x, xm) = (x− xm)T(x− xm). However, the Euclidean distance

does not take into consideration how the data is spread out, and may let the largest length scale

between data points dominate the dissimilarity function. Therefore, the Mahalanobis distance

d(x, xm) = (x− xm)TΛ−1(x− xm) where Λ is the covariance matrix could be used to rescale all

length of scales to be essentially equal.

The algorithm classifies a feature vector xn given training data xm where

m∗ = argmin
m

{d(xn, xm)}, 1 ≤ m ≤ k, (3.13)

However, the algorithm becomes more computational expensive in computational manner

as the dimension of the feature vector increases. Therefore, Principal Components Analysis (PCA)

is introduced [133] to reduce the dimension by replace {x} with a low dimensional projection {y}.

Hence, the dissimilarity function is denoted by d(yn, y
m). However, this method may not be helpful

to separate classes from each other while getting the lower dimensions. Hence, another approach

called Linear Discriminant Analysis (LDA) is introduced in [35] to reduce the dimension of feature

vectors while resulting in separation among classes.

3.2.2.3 Linear Discriminant Analysis (LDA)

In the supervised learning method where distinctive class information is available, the di-

mension of the feature vector can be reduced even while continuing to obtain a solid classification.

A supervised linear projection is defined as y = WTx where W is the projection matrix, L is the

dimension of y, dim{W} = D×L, L < D. Recall that D denotes the dimension of the feature vector

x. Since each user state class s is defined with a Gaussian model p(xs) = N (xs;ms, Ss) and the lin-

ear projection is being used, the Gaussian model turns into p(ys) = N (ys;µs, σ
2
s) where µs = WTms

and σ2
s = WTSsW.

The most efficient projection matrix creates a minimal overlap among the projected distri-

butions, which can be achieved when the projected means are maximally separated and the projected
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variance are not large enough. Hence, the objective equation is known via maximizing the Fisher

criterion [134]:

(µs − µś)
2

πsσ2
s + πśσ2

ś

→ F(W) =
WT(ms −mś)(ms −mś)

TW

WT(πsσ2
s + πśσ2

ś)
TW

=
WTAW

WTBW

, (3.14)

where πs is the fraction of the dataset in class s, s ̸= ś, A = (ms − mś)(ms − mś)
T and B =

πsσ
2
s + πśσ

2
ś .

In case of more than one dimension and more than two classes, Fisher’s projection method

(3.14) is generalized by Canonical Variates method, which takes p(x) = N (x;µs,Λs) and replace it

with p(y) = N (WTx;WTµs,W
TΛsW). Then, the following matrices are defined:

• Between Class Scatter: A =
∑

∀s ns(µs − µ)(µs − µ)T where µ is the mean of all data set

and ns is the number of data points in class s.

• Within Class Scatter: B =
∑

∀s nsBs where Bs =
1
ns

∑ns

u=1 (x
s
u − µs)(x

s
u − µs)

T = Λs.

By assuming B is invertible, the Cholesky factor B̃ is defined by B̃TB̃ = B. In addition, defining

W̃ = B̃W yields to have W = B̃−1W̃. Then, the latest Fisher criterion becomes:

F(W̃) =
(B̃−1W̃)TAB̃−1W̃

(B̃−1W̃)TB̃TB̃B̃−1W̃
=

W̃TB̃−TAB̃−1W̃

W̃TW̃
, (3.15)

which subjects to W̃TW̃ = I.

Since it is symmetric, the term B̃−TAB̃−1 in (3.15) turns into a special case of the real

valued eigen-decomposition form, Schur decomposition, QEQT where E is a diagonal matrix which

contains the eigenvalues. Hence, W̃ is set to hold relevant eigenvectors. Finally, the projection

matrix becomes

W = B̃−1W̃. (3.16)

To differentiate user states, the newest (i.e., lower dimensional) form of data classes and

feature vectors are modeled by (3.11) and (3.12).
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3.2.2.4 Online Processing - Dynamic Training/Supervisory Classes Update

For an online classification algorithm, one of the most important things is to reduce compu-

tational burden and stay away from large amount of data manipulations. Note that computational

complexity requires O(ηLD2), O(L2D), and O((L + c)2D) times for GMM, k-NN, and LDA with

Schur decomposition respectively where η is number of iterations during EM algorithm in GMM, and

c is the total number of user state classes. In this sense, the parameters related to GMM, k-NN, and

exceptionally LDA algorithms need to be dynamically updated in an efficient way rather than just

computing relevant system parameters all over again in case where new training data samples in-

serted into an existing class or a new data class is added/deleted. Especially, matrix multiplications,

which take O(cLD) time, need to be manipulated with ease during the update.

Here is the suggested update for the supervised classification algorithms:

• Adding a new data to an existing class i: (n̂s: the number of added training samples)

– Common properties for all classification methods:

∗ µ̂s = µs +∆µs

∗ ∆µs = ((
∑ns+n̂s

u=ns+1 x
s
u)− n̂sµs)/(ns + n̂s)

– Only additional for LDA:

∗ µ̂ =

(
(ns+n̂s)µ+

∑
∀s

∑ns+n̂s
u=ns+1 xs

u

)
(
∑

∀s ns+n̂s)

∗ Â =
∑

∀s(ns + n̂s)(µ̂s − µ̂)(µ̂s − µ̂)T

∗ B̂s =
1

ns+n̂s

∑ns+n̂s

u=1 (xsu − µ̂s)(x
s
u − µ̂s)

T

∗ B̂ =
∑

∀s
(
nsBs + ns∆µs∆

T
µs

+
∑ns+n̂s

u=ns+1 (x
s
u − µ̂s)(x

s
u − µ̂s)

T
)

• Adding/Deleting a class {s∗}:

– Common properties for all classification methods:

∗ create/delete µ{s∗} and Λ{s∗}

– Only additional for LDA:

∗ B̂ = B± n{s∗}B{s∗}

∗ Â = A + n∆µ∆
T
µ ± n{s∗}(µ{s∗} − µ̂)(µ{s∗} − µ̂)T

∗ ∆µ = µ̂− µ = ±n{s∗}(µ{s∗} − µ)/(n± n{s∗})
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Note that after the update completes, only for LDA algorithm, the linear projection matrix needs

to be re-computed.

3.2.3 Hidden Markov Models (HMMs)

Hidden Markov Models (HMMs) based human postural behavior and activity detection is

the mostly used statistical tool in HAR objected applications. In HMMs, a system parameter called

observation emission matrix is given with the help of (3.11) by

bs,Ot
= p(Ot/qt = s) =

K∑
k=1

pskN (Ot;µsk,Λsk), (3.17)

where s, Ot and qt is a user state (i.e., a data class), instant observation (i.e. feature vector), and

user state instance in a sequence respectively. The user state inference according to (3.2.2.1) is

done by checking for Gaussian membership of observations in reduced dimensions and selected the

suitable class according to majority vote in the classification.

On the other hand, for improving HMMs for online processing, a similar matrix like in (3.17)

can be constructed easily in light of the proposed method, which is given by

bs,Ot =

1 0

0 0

⊗
(1 0

0 1

REuc.
in

0 1

1 0

+REuc.
out

)
+

0 0

0 1

⊗
(1 0

0 1

RMAD
in +

0 1

1 0

RMAD
out

)
, (3.18)

where ⊗ is the Kronecker product; REuc.
in/out is the percentage of points stay in and out of radius

within the Fixed Search algorithm for Euclidean distance analysis to differentiate user states sitting,

{in}, and standing, {out}; and RMAD
in/out is the same algorithm approach but this time based on MAD

analysis to differentiate user states walking, {in}, and running, {out}.

In addition, another system parameter, user state transition matrix, is also defined as

as,ś =



1/3 1/3 1/3 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4

0 0 1/2 1/2


for the HMM relevant operations in where s and ś denote user states, which are ordered as sitting,

standing, walking, and running. According to the defined user state transition matrix, there is no
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Figure 3.4: The context inference from the accelerometer sensor: (a) a ten-minute recording of three-
axial acceleration signals while user posture changes, (b) the corresponding user state representations
before smoothing is applied.

possibility to transit from sitting to running, from standing to running, or vice versa. The rest of

the elements in the matrix has equal probability with respect to other state transitions.

3.3 Performance Evaluation

To demonstrate the effectiveness of the proposed classification method, experiments are

carried out by the Blackberry RIM Storm II 9550 smartphone as target device. The Blackberry

Java 7.1 SDK is used for programming implementations and Eclipse is used as software development

tool. Storm II consists of 3-axial accelerometer named ADXL346 from Analog Devices. Figure 3.4

shows a ten-minute recording of the collected sensory readings, and draws the track of user state

recognitions with respect to changing context in the readings.
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The target device is considered to be put in trousers pocket. A change in orientation of the

device, such as rotation, is an important design drawback for the most of classification algorithms,

especially for those which solely rely on exploiting specific axis information. Since the sensor is

not placed fixed, it would produce some distortion over acceleration axes. Upward or downward

position of the device causes x-axis flipped to y-axis or vice versa. Therefore, the device is placed

fixed in many studies in order not to change the orientation which yields to have false truthfulness in

desired activity recognitions. The applied classification method in this chapter is not affected much

by rotation of the device. As a worst case scenario, in case where the device changes its rotation,

the update process will handle the adaptation problem.

With the utilization of the proposed classification method, the accelerometer sensor is sam-

pled at fs = {100, 50, 25} Hz. The samplings are windowed with the window specifications of L = 3fs

and 50% overlap value. Exceptionally, when fs = 100 Hz is taken, L could be 2fs since the lower

sampling frequencies cannot resolve the inference problem when the window size is not adequate.

The proposed method infers user states from the obtained context through the accelerometer sensor

with almost a perfect accuracy as shown in Figure 3.4. In addition, user’s quick movements while

state transitions may lead to false statements in recognition process, especially any user transition

between sitting/standing/walking might be detected as walking or any user transition from/to walk-

ing might be detected as running. In such cases, a basic smoothing technique is applied by taking a

majority voting scheme by a sliding window with a specific length of user state history to prevent

from having false truthfulness in user state recognitions. Hence, the red circle in Figure 3.4.b is

corrected since the preceding and proceeding user states are different than what is perceived.

The experiments are carried out after obtaining long time accelerometer data recordings

from three different individuals. User state recognition analysis is examined through Figure 3.2,

(3.12), (3.13), (3.16) and (3.18) for each classification method. According to results, Table 3.2

shows the confusion matrix for user state recognitions under different classification methods at 100

Hz accelerometer sensor samplings. The proposed classification method, labeled as DT, achieves

a great differentiation in user states recognitions because the applied methodology well analyzes

the acceleration signals in order for defined postural movements, and exploits sufficient features

in order to make such differentiations in user states. In addition, other existing methods succeed

very reasonable truthfulness in user state recognitions. It is because that online processing allows

them to have updated training classes for the clustering problem. More significantly, it also achieves
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Table 3.2: Confusion Matrix 1: user state recognition under different classification methods at 100
Hz sampling

Method at 100 Hz a b c d

DT

a 99.5 0.5 0 0
b 0 98.5 1.5 0
c 0 1.3 97 1.7
d 0 0 8.5 91.5

GMM

a 96.2 3.3 0.5 0
b 1.9 93 5.1 0
c 0.5 3.5 90 6
d 0 0 8.5 91.5

k-NN

a 98.5 1 0.5 0
b 0 96.5 3.5 0
c 0 1.8 95.5 3.7
d 0 0 9.5 90.5

LDA

a 96.2 3.2 0.6 0
b 3.2 90.5 6.3 0
c 0.5 4.5 88.5 6.5
d 0 4.1 11.2 85.7

HMM

a 99 1 0 0
b 0 98.2 1.8 0
c 0 1.75 96.5 1.75
d 0 0 8.5 91.5

a: sitting, b: standing, c: walking, d: running

adaptability towards some heterogeneities observed over accelerations signals such as distortion due

to the rapid movement, or change in orientation. Only LDA algorithm seems to have worse outcomes

in the user state recognition problem. The result may cause from the size of feature vector. Since

the feature vector in this study is set to a length of 15, it may not resolve the clustering problem

after size reduction due to the projection. Note that most studies mentioned in Section 3.2 have a

very large size of feature vectors, e.g. size of over 40 features. In summary, existing classification

methods fall behind in comparison with the proposed method even if they benefit from all elements

of a feature vector while differentiating user state classes.

Moreover, Table 3.3 shows how the proposed classification method responds under lower

sampling frequencies. The method still achieves a solid differentiation between sitting and standing;

whereas, there are some confusion between walking and running. Due to lower number of samplings

obtained by sensory operations, and also actions such as walking/running has variant signal char-

acteristic, it would be difficult to have a pure data frame for each user state representation. Hence,

clustering problem becomes more challenging to be resolved.
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Table 3.3: Confusion Matrix 2: DT under different sampling frequencies

DT at fs a b c d

50 Hz

a 99.1 0.9 0 0
b 0 96.1 3.9 0
c 0 3.6 87.7 8.7
d 0 0 15.5 84.5

25 Hz

a 98 2 0 0
b 0 92.5 7.5 0
c 0 10.6 79 10.4
d 0 0 22 78

a: sitting, b: standing, c: walking, d: running

In conclusion, the proposed method achieves solid user state differentiations under variant

sampling frequencies by showing an above 90% overall accuracy at each fs, and it also compares

the outperforming result by showing an 10% overall enhancement for each user state at 100 Hz

with the widely used GMM, k-NN, LDA and HMM based classification, which applies supervised

and computational heavy-weight algorithms using high dimensional feature vectors and training

data classes, and which also be light-weighted for online analysis by this chapter. In addition, the

proposed method infers user states from the obtained context through the accelerometer sensor with

almost a perfect accuracy at 100 Hz, as shown in Figure 3.4.b. For the lower sampling frequencies,

the method still makes high accurate differentiations in user states.

A major challenge in extracting and providing user contextual information is based on

monitoring the context continuously. Constantly context monitoring in a sensor-rich mobile phone

imposes heavy workloads which cause some limitation in computing and battery power. Therefore,

there should be a mechanism to organize required processes for analyzing the context in a such way

that redundant repetitions of the same contextual information can be avoided.

Once a transition occurs into a new user state, there is no necessity to recognize and notify

the same context redundantly again and again as long as user state remains unchanged. A mechanism

can be considered to elaborate computational complexity during the processing of a sensor data; as

a result, a decision on the continuity of user state can be made at an early age of full processing

pipeline by achieving significant computational overhead save.

As illustrated in Figure 3.5, detection of an user contextual information is recognized by

employing an intelligent computational method. It is aimed to perform an inexpensive strategy
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Figure 3.5: Context monitoring mechanism

without completely exploiting a raw sensor data to make the decision on continuity of current user

state.

The conventional user state recognition method tries to process and analyze raw sensor data,

exploit context information, and compare it with a classification algorithm based on a decision tree

logic. In this method, basically every raw sensor data is carried through a processing pipeline, and

ends with an user state decision. In proposed approach, an intelligently pipelined context monitoring

mechanism is introduced to reduce high cost for required operation sequences. Main objective of

the mechanism is to notify user states to a running application only when an user state transition

occurs.

A sensor produces a discrete raw data periodically. Data entries into a processing pipeline;

output of the pipeline is to inform possible change of user states or not since the data is found so

identical to previous ones which were buffered.

3.4 Additional Topic: Context Monitoring Mechanism

The pipeline starts with a preprocessing structure. This structure basically filters out the

required information from raw sensor data. The information varies from one sensor to another. For

example; accelerometer and microphone gives away only one and required information whereas Wi-
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Fi and GPS returns a package that includes different kind of information; therefore, there might be

more than one monitored information sent by sensors. Different number of contextual information

forces to have same number of information buffers. Each buffer has same kind of contextual data

which belongs to previous samplings. Buffers are designed to gain flexibility and speed on decision

making, and also most importantly to help in decrease of the number of redundant computational

operations which can yield to stop the pipeline working before feature extraction algorithms are

applied. For example; let us imagine that accelerometer converts an analog signal and returns

related discrete digital data a hundred times in a second; since any user state cannot be changed

drastically that the sensor misses transitions, there is no point of processing all algorithms at each

sensor readings, and then send detected user state information to running application all the time.

At that point, a tradeoff might come up for buffer size that resolve the accuracy of decision on

matching with current user state.

Buffers consist comparison variables which are obtained from statistical analyses on the

previously stored contextual information. Comparison variables can be standard deviation, variance

or any other result of applied statistical tools. At the middle stage of processing pipeline, decision

maker classifications are applied among current and previous contextual information to interrogate

the existence of future processes such as feature extraction. Feature extraction block is the place

where a new and different contextual information is exploited to bring about a possible user state

transition. For instance; If environment was detected as in silence before, ’quite’, and if newly

obtained data indicates there is a changing situation in environment context, feature extraction

block analyzes the data and send out resulting outcome to user state detector block to decide on

which user state will be selected, would it be ’loud’, ’music’ or ’speech’?

User state detector block decides user state transitions, and inform them to applications.

Another important property belonging to this block is to assign required sensor set for recognition

of current user state and its possible transitions.

Duty cycle and adaptive sampling adjuster block basically keeps tracking length of intervals

in which sensor readings do not yield to cause to miss any user state transition. Therefore, depending

on how long time is spent on an user state, duty cycles and adaptive sampling periods can be adjusted

to secure energy efficiency.

As last, application is notified when a user state transition occurs; it, as naturally, queries

the mechanism at any time such as that a user defined event is wanted to be queried to check whether
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it can be happening or not. In summary, this chapter provides online classification methods to detect

the mobile device based user centric postural actions (user states are defined as sitting, standing,

walking, running) through the smartphone accelerometer sensor by developing a novel Decision

Tree (DT) based method in unsupervised learning mode as well as by improving some widely used

existing classification methods (GMM, k-NN, LDA, HMM) for online processing. The proposed

classification method exploits the context provided by the acceleration signals effectively using an

adequate usage of signal processing techniques and Fixed-Radius Neighbors Search algorithm (SVM

may also be used instead) within the concept of DT classifiers. Hence, there is no need for creating

high dimensional feature vectors to be fed into pattern recognition algorithms for clustering the

desired user state classes, which allows algorithms to gain the lightweight property. Furthermore,

the proposed method does not need any a priori information about user state classes; whereas, it can

provide training data classes to assist other classification methods, which employ feature vectors. To

demonstrate the effectiveness of the proposed classification method and to prove its ability to make

a solid differentiations among user states even under different sampling frequencies, the experiments

are carried out successfully through the accelerometer sensor built-in a smartphone. In summary,

the proposed method achieves solid user state differentiations under variant sampling frequencies by

showing an above 90% overall accuracy at each fs, and it also outperforms GMM, k-NN, LDA and

HMM based classifications by showing an 10% overall enhancement for each user state at 100 Hz.

Thereby, this chapter aims at providing a solution for the tradeoff existing between context accuracy

and computational power in resource-constrained mobile sensing platforms.
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CHAPTER 4

CONTEXT-AWARE FRAMEWORK: A BASIC DESIGN

The understanding of human activity is based on discovery of the activity pattern and

accurate recognition of the activity itself. Therefore, researchers have focused on implementing

pervasive systems in order to create high-level conceptual models to infer activities and low-level

sensory models to extract context from unknown activity patterns. In this sense, a successful research

has been conducted in the area of human-centric ubiquitous sensing.

Specifically, smartphones could provide a large number of applications within the defined

research area. Human beings involve in a vast variety of activities within a very diverse context. A

specific context can be extracted by a smartphone application, which acquires relevant data through

built-in sensors. A desired activity within the context is then inferred by successful algorithmic

implementations. Unfortunately, all of these operations put a heavy workload on the smartphone

processor and sensors. Constantly running built-in sensors consume relatively much more power

than a smartphone does for fundamental functions such as calling or text messaging. Therefore,

mobile device batteries do not last a long time while operating sensors simultaneously.

However, some application fields like medical (see [66, 67]) or personal sensing (see [63–65])

could use mobile devices as measurement devices. Suppose that a patient with heart disease needs

an application to keep track of his/her heart beats by a wearable sensor. The relevant application

would monitor and evaluate data samples, more importantly, it could notify health centers in case

an emergency situation occurs [68]. Another example could be marked by studies which recognize

stress level since a balanced stress level has been studied to be an important factor to improve quality

of life [69]. Consequently, context-aware applications are becoming essential in our day to day life

which in return implies a greater power consumption required by smartphones.

In this sense, a framework is required to create a control mechanism for sensor utilizations

and to help context-aware applications work their functionalities properly.
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This chapter proposes an inhomogeneous (time-variant) Hidden Markov Model (HMM)

based framework in order to represent user states by defining them as an outcome of either the

recognition or estimation model. The framework also applies different sensory sampling operations

in order to examine the device battery lifetime. With this method, sleeping time for a sensor can

be extended by entering its idle operating mode frequently. While the sensor is in idle mode, the

user might either keep or change his/her current activity. Thereby, a statistical model is required

to track time-variant user activity profiles in order to predict the best likely user state that fits into

instant user behavior. As a result, user states are either recognized as an inference of actual sensor

readings or as an estimation of the missing inference. The ultimate goal of this chapter is to find a

proper way to balance the trade-off while representing user states accurately as well as making sure

that power efficiency is maximized.

The followings highlight some key elements introduced by this chapter:

• This research intends to create and clarify an effective HMM based framework to guide

the development of real-time operating future context-aware applications.

• The framework accepts that user behavior changes in time; thereby, it assumes that

HMM parameters are inhomogeneous (i.e., time-variant). As a result, there is no a priori

assumption revealed on system parameters such as how HMM evolves in terms of the

information belonging to the probability of HMM state transitions.

• Adaptability problem is introduced for inhomogeneous user behaviors, and a relevant

solution is given by the uncertainty of entropy rate. It is shown that the convergence of

entropy rate could be used to notify a specific user behavior.

• An effective online unsupervised user state recognition algorithm for postural actions

‘sitting’ and ‘standing’ for context extraction through accelerometer data is provided in

order to infer relevant activities within the provided context, and also to conduct the

observation analysis of HMM.

• By changing sampling frequencies in sensory operations, the trade-off analysis is examined.

The connection between the context inference under different sampling frequencies and its

effect on the convergence of entropy rate is discovered. Accordingly, the slower sampling

methods could cause a failure in the convergence of entropy rate. Thereby, the discovery
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could be used to make a prediction on the actual accuracy of a HAR based application

performance in a real-time environment since there is not an exact solution to compare

the actual user behaviors with the recognized behaviors. With this discovery, a feedback

mechanism can be built to monitor the convergence of entropy rate while change sensory

sampling operations. If the convergence stabilizes, then the period of sensory samplings

is extended; or vice versa.

• Missing observations occurred during the slower sensory samplings are found by Naive

Bayesian approach within HMMs.

• A proper simulation model is built around the accelerometer sensor so that the trade-off

between accuracy in user state representations and efficiency in power consumption could

be examined in detail.

• A smartphone application using the accelerometer sensor is implemented to show the

effectiveness of the proposed framework.

The outline of the chapter is as follows: Section 4.1 includes a summary of prior works in

this field including a discussion and recommendations on the ongoing research. In Section 4.2, the

proposed framework is constructed in light of the defined purposes above. Section 4.3 and Section

4.4 are reserved for results obtained by simulations and a smartphone application in order to validate

the proposed framework.

4.1 Prior Works and Discussions

Many studies can be found in which a framework is proposed to capture and evaluate sensory

contextual information. Most of the studies rely on recognition of user activities and definition of

common user behaviors. For instance, gesture recognition of users is well studied using video cameras.

The applied methods in relevant studies are based on statistical models, which this chapter also

intends to use. However, none of these studies engage themselves to model a common framework

in order to construct a base structure for future context-aware applications. They would rather

have canalized solutions to solve their own unique applications instead of a generalized approach.

Therefore, these studies mostly focus on a specific sensor to discover possible target applications in

order to exploit contextual data. A generic framework which fulfills requirements set by all types
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of context-aware applications was not identified. In contrast, all of the studies put the importance

on evident trade-off, which is triggered by reducing power consumption while being intended to

continuously receive accurate sensor contextual data.

From the literature search, it is important to refer to Wang et al. [12, 135] who proposes a

sensor management system, which is called Energy Efficient Mobile Sensing System (EEMSS). This

system models user states as a discrete time Markov chain and improves a device battery life by

powering a minimum set of sensors and also by applying duty cycling into sensor operation. However,

sensors have fixed duty cycles when they are active, and they are not adjustable to different user

behaviors. Also, given system is predetermined and not time-variant. Another study which analyzes

hierarchical sensor management systems is introduced with a name of ”SeeMon” in [28]. This system

achieves energy efficiency and satisfies less computational complexity by performing continuous

detection of context recognition when changes occur during context monitoring. Moreover, [33]

demonstrates advantages of a dynamic sensor selection scheme for accuracy-power trade-off in user

state recognition. From a power efficiency standpoint, Rachuri et al. [6] uses different sampling period

schemes for querying sensory data in continuous sensing mobile systems to evaluate accuracy-power

trade-offs.

Statistical tools based, such as Hidden Markov Models (HMMs), posture and activity de-

tection is proposed in many studies [29, 125–127]. These studies mostly lack some key issues as

follows: First of all, observations are considered directly as sensory data without applying any signal

processing techniques. This consideration stems from the general definition of HMMs, which are

constructed with Gaussian featured observation sequences. In addition, state transition matrices

are manipulated in order for systems to infer predefined user states given observation sequences. In

addition, these matrices are generally arbitrarily formed, and mostly based on visual observations.

Therefore, it would be so difficult to answer some questions such as “How would these systems act

against different user profiles?” and “What if a sensor could be used for different context extraction?,

how would observations be formed?.”

Other methods used for activity detection benefit from signal processing and pattern recog-

nition techniques. Relevant studies such as [34, 121–124, 136, 137] construct a framework which is

designed to control the acquisition and interpretation of data from one or more sensor(s). This infer-

ence framework is implemented for a range of context aware workloads by using diverse algorithmic

primitives. The framework analyzes spatial characteristics of sensory signals based on either time
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space or frequency spectrum. High-dimensional feature matrices are constructed by including many

signal processing functions ranging from angular velocity, correlation, energy, entropy, magnitude,

mean, min-max values, standard deviation to frequency domain entropy, peak frequency analysis and

power spectrum density. Then, these large feature matrices undergo pattern recognition techniques

such as k-means clustering, nearest neighbors search, and Support Vector Machines (SVM). The

major drawback of these studies stem from offline decision process executed as follows: First, total

sensory observations are recorded. Second, a feature vector is constructed over partitioned data

records with a predefined window length. Third, default feature matrices are user-manipulated,

which are extracted from a specific window of recorded data to be able to describe specific states.

The final step is using a template match, i.e. supervised learning, by comparing default feature

matrices with instantly constructed feature matrices. With this applied methodology, it is not clear

how resource-constrained mobile devices provide highly complex signal processing operations by

handling large size data manipulation.

In addition, the use of entropy rate as optimization criteria within the concept of HMMs

to address a solution in order to reduce power consumption is introduced in [138] and implemented

in [139]. These studies accept offline decision process to attain an optimal sampling policy through

recorded HMM observations with the known transition probabilities among states. The policy

aims at selecting most informative sub-sequences of observations by measuring the uncertainty of

expected entropy rate with respect to a power consumption constraint. By this policy, the time

intervals where the most informative sub-sequences are selected define the length of idle times in

sensory operations. Unfortunately, the policy gives a deterministic sampling strategy, and the given

strategy is valid for time-invariant systems by providing example of defining measurement epochs to

build a temperature time series during the day. However, the optimal strategies would work only if

the weather season does not change since it accepts the transitions probabilities among temperature

measurements are fixed; thereby, this solution does not satisfy the trade-off requirement needed by

HAR based applications, which rely on actively changing distinctive user behaviors.

4.2 Construction of the Proposed Framework

A Hidden Markov Model (HMM) [140] can be applied to a system which aims to recognize

user states, as shown in Figure 4.1. In this system, sensor readings (i.e., extracted user contexts

through mobile device based sensors) are seen as inputs. These readings undergo a series of sig-
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Figure 4.1: Operation of the proposed framework

nal processing operations and eventually end up with a classification algorithm in order to provide

desirable inferences about user behaviors/profiles for context-aware applications. A required classi-

fication algorithm differs in terms of explanation of extracted user context through a specific sensor.

Outcomes of the algorithm are represented in a matrix whose elements show probability weights for

possible user state selections. Finally, a selection criteria is set to differentiate between user states.

Classification algorithms produce observations (i.e., visible states), ϑ, of HMM. Among ob-

servations, only one observation is expected to provide the most likely differentiation in selection

of instant user state representation. This observation is marked as instant observation, which also

indicates the most recent element of observation sequence of HMM. On the other hand, user states

are defined as hidden states, S, of HMM since they are not directly observable but only reachable

over visible states. Therefore, each observation has cross probabilities to point any user state. These

cross probabilities build an emission matrix, bjk, which basically defines decision probabilities of

picking user states from available observations.

In addition, a user state might not be stationary since a general user behavior changes

in time. Thus, it is expected from a user state either to transit into another user state or to

remain same. These occurrences build a time-variant user state transition matrix, aij , which defines

transition probabilities among the user states.

Note that one sensor model is considered for the sake of generalization. In reality, to

recognize a user state, it might require multiple sensory observations.
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4.2.1 Basic Definitions

First order HMM is proposed for creating a statistical tool to show dependencies of states

at discrete time t that are influenced directly by a state at discrete time t− 11 [141, 142]. Discrete

time is used to specify sensor readings which occur periodically in a system.

HMM is characterized by the following elements:

• Hidden Process : A set of hidden states is defined as a discrete time process with a finite

space of N,

S[1:t] = {S1 = i, S2, . . . , St}, ∀i ∈ {1, . . . ,N}.

Recall that the system can revisit a user state at different system times and also not every

user state needs to be visited.

• Initial Hidden State Probability : An irreducible and aperiodic Markov chain that begins

with its ergodic distribution:

πi = Pr(S0 = i),


∀i ∈ {1, . . . ,N},

πi ≥ 0,∑N
i=1 πi = 1.

• State Transition Probability : a is described as {N × N} state transition matrix where

each element aij of a is equal to a transition probability from state i to state j,

aij = Pr(St = j | St−1 = i),


∀i, j ∈ {1, . . . ,N},

aij ≥ 0,∑N
i=1 aij = 1.

There is no requirement that transition probabilities must be symmetric (aij ̸= aji) or a

specific state might remain the same in succession of time (aii = 0).

1In an n-th order Markov process, state at t has dependencies with states at {t− n, t− n+ 1, . . . , t− 1}.
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Figure 4.2: User state recognition/estimation method

• V isible Process : A set of observations is defined as a discrete time process with a finite

space of K,

ϑ[1:t] = {ϑ1 = k, ϑ2, . . . , ϑt}, ∀k ∈ {1, . . . ,K}.

• Observation Emission Probability : b is described as {N × K} observation emission

matrix where each element bjk of b is equal to a cross probability between hidden state

and emitted observation,

bjk = Pr(ϑt = k | St = j),



∀j ∈ {1, . . . ,N},

∀k ∈ {1, . . . ,K},

bjk ≥ 0,∑K
k=1 bjk = 1.

HMM parameters are usually denoted as a triplet λ = {aij , bjk, πi}.

4.2.2 User State Representation Engine

User state representation engine infers an instant user behavior in light of prior knowledge

of a human behavior pattern and availability of sensory observation at decision time. If sensory

observation exists, the applied process is called recognition method; otherwise, estimation method.
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Figure 4.3: Forward-backward algorithm

In other words, estimation method is applied whenever power efficiency is taken into consideration

by a system, seen in Figure 4.2.

The probability of a specific observation sequence is given by

Pr(ϑ | λ) =
N∑
i=1

Pr(ϑ | S, λ)Pr(S | λ)

=
N∑
i=1

π0

T∏
t=1

Pr(ϑt | St)Pr(St | St−1)

=

N∑
i=1

π0

T∏
t=1

aijbj(ϑt = k)

(4.1)

By implementing Bayes’ theorem together with (4.1), a sequence of hidden states can be

formulated by

Pr(S | ϑ, λ) = Pr(ϑ | S, λ)Pr(S, λ)
Pr(ϑ, λ)

(4.2)

Then, inference of a hidden state at time t in (4.2) is given by

Pr(St = i | ϑ[1:τ ])

where τ = t− 1, t or T is termed as ”predicted”, P, ”filtered”, F , and ”smoothed”, S, probabilities

of St, depending on observation sequence of ϑ[1:t−1], ϑ[1:t] or ϑ[1:T ] respectively.

The filtered probabilities of St have already been named user state recognition method in

this chapter. Thus, the relevant probability of an instant user state recognition can be found by

either evaluation method or decoding.
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Figure 4.4: Viterbi algorithm

Evaluation method, a.k.a. forward and backward algorithms [140], see Figure 4.3, is pro-

posed to find the most likely one-step ahead or one-step back user state in a hidden chain. Evaluation

method relies on updating probability weights iteratively that decides which user state is selected

to represent instant user activity.

The corresponding probability weights are α for forward iterations and β for backward

iterations. αt is the probability of current occurrence of a user state, St, generated from one-step

previous occurrence, St−1. On the other hand, with reverse analogy, βt is defined as the probability

of transition occurrence of St−1 from St.

From inferences of (4.2) since it has inductive calculations by using ϑt, St and St−1 each

term, α and β are expressed as follows:

• αt =
∑
j αt−1aijbj(ϑt = k) with condition of α0 = 1 for initial state, π0 at t = 0.

• βt =
∑
j βt+1aijbj(ϑt+1 = k) with condition of βT = 1 for final state, πT at t = T .

The term of aijbj(ϑt = k) represents a user state transition triggered by given observation.

Since recognition process of user states evolves in real time by context-aware applications,

forward algorithm is employed to assign a proper user state in order to specify current user activity

whenever a new observation is made.

ŜT = argmax
1≤i≤N

[αT ] (4.3)

selects the most likely instant user state representation with existing probability of Pr(ŜT ) =

max1≤i≤N [αT ].
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Figure 4.5: Prediction/filtering/smoothing

On the other hand, to make sure that recognitions are made true, backward algorithm can

also be employed. By this method, accuracy of previous user state recognition is validated. However,

this method can be seen redundant due to the fact that it consumes additional computational power.

Another user state recognition method is decoding, a.k.a. Viterbi algorithm [143], see

Figure 4.4, which recursively finds the most probable hidden state chain by given history of sequences

for both observations and user states with system parameters, λ.

Let (δt = i) be defined as the probability of the most probable path termination for a user

state (St = i).

(δt = i) = max
S1,...,St−1

Pr(S1...St−1(St = i);ϑ1...ϑt | λ) (4.4a)

(δt = j) can be calculated recursively by

(δt = j) = max
1≤i≤N

[(δt−1 = i)aij ]bj(ϑt) (4.4b)

with initialization of (δ1 = i) = πibi(ϑ1) 1 ≤ i ≤ N and termination of ŜT = argmax1≤i≤N [(δT =

i)] where the existing probability of Pr(ŜT ) = [π̂T ] = max1≤i≤N [(δT = i)].

In addition to using filtered probabilities to recognize user states, predicted probabilities are

used to estimate user state if necessary. When power saving methods are taken into consideration,

there will be some time intervals during sensor operation in which no sensor readings are obtained.

As a result, system cannot receive a relevant observation. In that case, inference of instant user

state will be based on estimation method not on recognition method.
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Table 4.1: Filtering user states while no observation received

Filter at t− 1 Pr(St−1 = j | ϑt−1)
↓

Prediction at t Pr(St = j | ϑt−1)
↓ ϑt

Filter at t Pr(St = j | ϑt)

User state estimation method uses predicted probabilities. Therefore, a posteriori probabil-

ities need to be derived from given existing system parameters, see Table 4.1 and Figure 4.5.

Predicted probabilities are found by

Pt(j) = Pr(St = j | ϑ[1:t−1], �ϑt)

= Pr(St = j, ϑt = k | ϑ[1:t−1])

=
∑
j

aijFt−1(i)
∑
k

bj(ϑt = k)

=
∑
j

aijFt−1(i)

(4.5a)

where Ft(i) = αt(i) is taken.

Alternatively, Pt(j) can be found by assigning the most likely visionary observation instead

by accepting there is a missing observation.

Pt(j) =
∑
j

aijFt−1(i)bj(ϑt = kpredicted) (4.5b)

Pt(j) can be extended as Pt(j, k) to show a dependency on future predicted observations.

Pt(j, k) =
∑
j

aijFt−1(i)bj(ϑt = k) (4.5c)

Then, the most likely observation is selected according to assigning each possible observation as a

final node to observation sequence as indicated in (6.11) while calculating probability of sequence

existence

(ϑt = kpredicted) = argmax
k

∑
j

Pt(j, k) (4.6)
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with probability of Pr(ϑt) = maxk
∑
j Pt(j, k).

4.2.3 System Adaptability

The most important feature of context-aware applications is being capable of adapting

themselves to user behaviors. User context differs in time and the corresponding user state also

does. Since user behavior shows various patterns from one user to another, a sequence of user states

for each user will be arranged in a different formation with respect to variant user state transitions

occurring throughout time. For instance; one user might remain in same user state for a long time;

whereas, others might be more active by changing their user states frequently. Therefore, it cannot

be expected from relevant user state transition matrix to remain stationary. User state transition

matrix evolves in time and must adapt itself to user choices.

S1

S3

S2

S6

S5S0 S4

Figure 4.6: An example of user state transitions

4.2.3.1 Time-Variant User State Transition Matrix

User state transitions can be represented as simple random walk on a graph. A finite, simple

and undirected graph is a finite collection of vertices, V, and a collection of edges, E, where each

edge connects two different vertices and any two vertices are connected by at most one edge [141,

142], such as the graph shown in Figure 4.6.

Let’s notate υ1 ∼ υ2 as vertices υ1 and υ2 are adjacent or an edge connects the two vertices.

User states in HMM are vertices of the graph. The chain chooses a new user state randomly

from among neighbor user states adjacent to current user state.

Transition matrix for this chain is given by

aij =
1

d(υi)
, υi ∼ υj

where d(υi) is the number of vertices adjacent to d(υi). For example, if d(υi) is 0, aii becomes 1.
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This transition matrix is a default system parameter which is predefined in application for

all users. Starting from that point, transition matrix will be evolving in time in response to user

behaviors/profiles.

4.2.3.2 Time-Variant Emission Matrix

The system always receives an updated version of the emission matrix at each discrete time

when a new context is conceived thanks to the resulted classification algorithms. Therefore, the

emission matrix always includes an active condition of cross-probabilities among user states and

observations.

4.2.3.3 System Parameters Updating

The system has to update the user state transition matrix periodically according to obtained

observations and recognized/estimated user states. There is no finite solution to find an optimal

set of updated a and b. Boltzmann method or numerous weight adjustments methods can be found

in literature for this purpose. In this study, a generalized expectation maximization algorithm

is considered for updating process, which is a.k.a. forward-backward algorithm or Baum-Welch

method [140, 144]. This method relies on updating weights iteratively to estimate new system

parameters.

The process of how weights are calculated is explained and described in Section 6.2.1.3. With

the combination of α and β, system parameters can be estimated. For this purpose, γt is defined to

present the probability of transition from St−1 to St in the presence of observation sequence, ϑt.

γt =
αt−1aijbijβt
Pr(ϑt | St, λ)

(4.7)

Updated version of elements belonging to user state transition matrix is found using (4.7),

which is defined by division the expected number of transitions from St−1 to St at any time to total

expected number of transitions from any user state to St:

âij =

∑T
t=1 γt∑T

t=1

∑
k γt

(4.8)

(4.8) is repeatedly calculated until the difference between newly estimated aij and current

aij is less than a predetermined converge criteria. However, this algorithm runs only once when

71



www.manaraa.com

needed in this study because it consumes considerable computational power. Plus, an update for

system parameters is invoked regularly to be able to satisfy adaptation to user behaviors faster;

therefore, aij would converge in anyway sooner or later.

4.2.3.4 Entropy Rate

Entropy is a measure of uncertainty in a stochastic process. It quantifies the expected value

of information contained in a specific realization of any random variable. The value of entropy rate

shows predictability of a random distribution. As long as entropy rate gets closer to 0, outcomes

of distribution become more predictable. In this study, entropy rate is used to track the user state

transition matrix. Since the transition matrix is set fixed as default for all users, the system has to

adapt to unique user behaviors in time by tracking changes in transition matrix. When entropy rate

converges into a stable value, it points out that the system could manage to set required adjustment

on adaptation [145, 146].

Entropy rate for a HMM is given by

H(St) = lim
t→∞

H(St | S[1:t−1]) = lim
t→∞

H(St | St−1)

=
∑
i

H(St | St−1 = i)Pr(St−1 = i)

=
∑
i

(−
∑
j

aij log aij)πi = −
∑
ij

πiaij log aij

(4.9a)

With time-variant property, entropy rate becomes

H(ST ) =
1

T

T∑
t=1

H(St) (4.9b)

in time sequence of T.

4.2.3.5 Scaling

Computational complexity while calculating system parameters causes a crucial underflow

problem. When time goes by during evolution of HMM chains, both αt(i)
t⇒ 0 and βt(i)

t⇒ 0

starts to head to zero at a exponential rate since aij and bjk include elements being lower than 1.
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Therefore, both variable needs to be scaled.

α̂(i,t) =
α(i,t)∏t

τ=1

∑
i α(i,τ)

(4.10a)

β̂(i,t) =
β(i,t)∏t

τ=1

∑
i α(i,τ)

(4.10b)

where κt = 1/
∑
i αt(i) is defined as a scaling coefficient or a scaling factor in study of [140].

4.3 Simulations

Simulations are carried out in Matlab in order to examine the defined trade-off between

power consumption and accuracy in user state representations in light of the proposed framework

for context-aware applications. Some case scenarios are created so as to indicate the framework is

still valid under different system parameters. For the sake of simplicity, two-user state consisting

HMM is considered. However, more complex models can be applied as well by using same system

approach.

4.3.1 Preparations

The required HMM is constructed with an initial user state probability, π0:

π0 =

[
0.95 0.05

]
(4.11a)

and an initial user state transition matrix, adefaultij :

adefaultij =

0.5 0.5

0.5 0.5

 (4.11b)

adefaultij is set fixed for all user profiles initially. It is expected from user state transition

matrix to adjust itself according to different user profiles so that adaptability problem arisen in

context-aware applications could be solved.
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In order to claim that system provides adaptability, different user profiles are generated by

assigning various probabilities to user state transition matrix, aij .

a
[1:6]
ij =

0.1 0.9

0.9 0.1

 ,
0.25 0.75

0.75 0.25

 ,
0.5 0.5

0.5 0.5

 ,
0.9 0.1

0.1 0.9

 ,
0.75 0.25

0.25 0.75

 ,
0.5 0.5

0.1 0.9

 (4.11c)

It can be seen that first five matrices has symmetrical user profile; however, last one is not.

In addition, observation emission matrix is built by

b
[1:2]
jk =

0.75 0.20 0.05

0.05 0.20 0.75

 ,
0.05 0.20 0.75

0.75 0.20 0.05

 (4.11d)

Given matrices show that three different classification results help a decision process to

select a proper user state for instant user activity representation. In other words, same selection

criteria is valid every time for which user state is most likely to be chosen in the presence of its cross-

relations among observations. For example, given bjk indicates that first and third observations have

relatively significant weights for the decision process. During simulation, these matrices remain same

in order to make healthy statements on system response to different user profiles.

4.3.2 Process

Figure 4.1 indicates how the proposed system runs. There is a moving frame acting like

a queue structure to store new and recent observations. Initially, the frame is being filled with

observations until it notifies full. After that, system updates aij and prepares itself for future

operations such as running user state recognition or estimation methods. Since it would cause

an insufficient number of observations to select proper user state representations, no operation is

executed while initial frame is being filled. Hence, it is not allowed to run energy saving algorithms

during initial frame is in progress.

The frame keeps rolling in time by inserting a new instant observation and rejecting the

oldest observation simultaneously. Having a frame like queue structure enables to store a short term

memory of recent observation history and to preserve redundant waste of computational power.

Increase in number of observations yields to put more workload on computations required for applied

algorithms during user state representations and update of system parameters. Therefore, length of
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Table 4.2: Current consumption vs. data rate in accelerometer, ADXL346

(VDDI/O = 1.8 V, VS = 2.6 V)

Data Rate (Hz) IDD(µA)

100 140
50 90
25 55
12.5 40

Autosleep Mode 23
Standby Mode 0.2

the frame is an important system parameter to be set proper. During simulations, this value is set

to 60 observations per frame.

System parameters, (4.8) and (4.10), are updated periodically whenever the frame advances

as long as its length. This process continues until the system is terminated.

4.3.3 Power Consumption Model

The system makes an observation after a predefined number of sensor samplings are acquired.

Then, user state is recognized with the help of extracted context from samplings. Actual sampling

time in sensor operation can be extended in order to prolong a mobile device battery lifetime.

Sampling intervals are modeled as Ii = n/fs where n and fs are an integer value and sampling

frequency respectively. Ii defines a waiting time between two consecutive sensor samplings. During

simulations, n = {1, 2, 4, 8} and fs = 100 Hz are taken.

Given the probability of user states and interval waiting time for a corresponding user state,

the expected waiting time for an upcoming sensor sampling is calculated by

E[It] =
∑
i

Pr(St = i)(It = i) (4.12)

Since Ii is considered fixed for all user states throughout simulations, being at any user state

does not change a relevant waiting duration to acquire a new sensor sampling.

Reasonably speaking that the expected energy consumption at each sensor sampling is

inversely proportional to waiting time (4.12),

E[Ct] ∝
1

E[It]
(4.13)
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For instance; if n = 1 is taken for each user state, energy consumption turns out the highest

since sensor sampling is being made at each available time slot. Otherwise, whenever n > 1, there

comes time slots at which no sampling is made.

The least power consuming sensor on today’s smartphones is the accelerometer [147]. There-

fore, the accelerometer sensor is considered to use in simulations and implementation of a real-time

application.

Accelerometer sensor needs to be modeled in order to examine power efficiency achieved at

each different sampling strategy. Table 4.2. provides modeling parameters belonging to accelerom-

eter used in application. Drawn current values at specific sampling frequencies give an idea of how

much power could be consumed in different sensor operation modes of accelerometer [148].

In this sense, let Ωsample and Ωidle be given as default sensor properties for power con-

sumption per unit time during sensing and during running idle respectively [15]. Note that only

drain current value IDD is an effective modeling parameter to determine power consumption through

sampling channel under stable drain voltage VDD where power is formulated as P = V I in physics.

Energy consumption during sensing is then formalized as

Θsampling =

#ofsamplings∑
m=1

δ(m)Ωsample (4.14)

where δ(m) is Kronecker delta function that indicates sampling is being made.

Also, energy consumption during sensor is in idle mode is given by

Θidle =

# of estimations∑
m=1

δ(m)Ωidle (4.15)

According to Table 4.2, current flowing at the lowest data rate 12.5 Hz draws roughly

200 times more than current flow in stand-by mode. This information reveals that total energy

consumption to acquire samplings is much more greater than the one while the sensor is being

idle, Θsample ≫ Θidle. Assuming that the sensor becomes idle between two consecutive sampling

operations, total energy consumption wasted during a waiting time is ignored.
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In summary, in presence of (4.14) and (4.15), the fact that expected waiting time is inversely

proportional to number of samplings gives a clue of

E[I] ∝ 1

Θsampling
∝ Θidle

Note that computational power required to extract contextual inference from sensor sam-

plings is ignored.

4.3.4 Accuracy Model

The probability of error occurred during either recognition or estimation of user state is

calculated by

et = 1− Pr(Ŝt) (4.16a)

This information yields to find the expected recognition error throughout observation space

O with a number of occurrences #O

E[erec.] =
1

#O

O∑
t=1

erec.t (4.16b)

The expected estimation error uses arithmetic mean method. However, it is assumed that

tf is where the first sampling is made. Then, the weight corresponding to an error occurred where

the first estimation is made should have lower proportion than the weight corresponding to an error

occurred where the last estimation is made because of the fact that while time goes by and an

estimation is being made one after another, the accuracy of estimations are expected to degrade.

Therefore, the relevant weight for any estimation point is reciprocal of the time distance to next

available sampling time slot. In that case, harmonic mean becomes more appealing to finding

expected estimation error.

Whenever n > 1, the expected estimation error between two consecutive samplings is given

by

E[eest.] =
1

#O

O∑
tf=1

(
1

Ii − 1

tmax=tf+Ii−1∑
t=tf+1

tmax − t+ 1

eest.t

)−1

(4.16c)
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Finally, accuracy can be found using (4.16) by

φ% =

(
1− (E[erec.] + E[eest.])

)
∗ 100 (4.17)

4.3.5 Setups

A waiting time for two consecutive samplings is set to {n1, n2} = {1, 2, 4, 8} where {n1, n2} ∝

I with respect to which user state is represented, S1 or S2. That a pair of (n1, n2) is selected as (1, 1)

means there is no power saving method applied. In contrast, selection of (8, 8) means almost 87.5%

of observations inside of the moving frame mentioned in Section 4.3.2 will be estimated according

to (4.6).

Total observation number is set to 3600. Recall that the length of the moving frame has been

already set to 60. According to which user profile is chosen (i.e., a specific aij), user states are found

by Viterbi algorithm (4.4) with already synthetically generated Markovian observations. These user

states are marked as original user states. While the proposed framework is operating, original user

states are compared to the user states (4.3) obtained by recognition or estimation methods for the

sake of accuracy (4.17).

A simulation starts for each user scenario with default system settings (4.11). In addition,

all possible power saving methods are applied repeatedly on observation sequences as long as the

proposed system runs and finishes a process of finding proper user state representations.

4.3.6 Discussions

According to simulation results, Figure 4.7 shows how entropy rate could give a clue of

identifying a specific user profile, and Figure 4.8 also shows how applied power saving methods

affect convergence of entropy rate and accuracy of instant user state representations.

Firstly, adaptability to any user profile is considered in form of convergence of entropy rate.

As stated in Section 4.2.3.4, entropy rate (4.9) is calculated with transition matrix, aij . Transition

matrix which is initially fixed for all user profiles gets adjusted to an assigned user profile when

time goes by. With the explanation of entropy rate, small difference in entropy rate reveals high

prediction of how much closer transition matrix gets into relevant user profile. Therefore, if entropy

rate converges into a specific value, which means time-variant user state transition matrix becomes

stationary (i.e., time-invariant). In this sense, Figure 4.7 shows how the system achieves adaptability
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Figure 4.7: Simulation: entropy rate vs. variant user profiles

to different user profiles under variant power saving methods. Discussions on this graph can be made

as follows:

• Symmetrically constructed user state transition matrices and their horizontal-flipped

forms draw almost similar trajectories with respect to any change in convergence of en-

tropy rate, (a(1) ≈ a(4)) and (a(2) ≈ a(5)).

• Observation emission matrices and their horizontal-flipped forms respond in a similar way

to updating process of user state transition matrix, (b(1) ≈ b(2)).

• Entropy rate can be very distinctive factor to identify different user profiles.

• Frequently changing user states like a(3) has the lowest entropy rate since it is for sure

that the frequentness of user state transitions will be more predictable.

• Aggressive sampling method (i.e., sampling at 100 Hz) helps user state transition matrix

to adapt itself to relevant user profile very quickly and produces clear results to track

where entropy rate converges. In contrast, decrease in sampling frequency causes slower

adaptability and late convergence.
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Figure 4.8: Simulation: power consumption vs. accuracy

Secondly, accuracy of user state representations at different sampling methods is examined

for all user profiles. Figure 4.8. indicates accuracy rate versus earned power efficiency by sampling

methods. The following assumptions can be evaluated from this graph:

• Aggressive sampling achieves the most accurate user state selections; whereas, this method

consumes the highest power.

• Other sampling methods elevate power efficiency while satisfying a reasonable accuracy.

– Sampling at 50 Hz results in power efficiency of 60% in return for an accuracy

range from 75% up to 96%, depending on user profiles.

– At 25 Hz, power efficiency goes up to 78%; however, accuracy downs to from

64% up to 91%.

– Finally, the slowest sampling method at 12.5 Hz hits up the highest power

efficiency by 82% while accuracy falls in a range from 55% up to 87%.
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• The lowest accuracy is obtained by the third user profile a(3) since it has equal probability

for both user states. In that case, the system becomes uncertain when it comes to a point

of decision on proper user state selection.

• Interestingly, symmetrically constructed user state transition matrices and their horizontal-

flipped forms have same accuracy model versus power efficiency, (a(1) ≈ a(4)) and (a(2) ≈

a(5)).

• Asymmetrically constructed user state transition matrix gives the best solution to the

trade-off by achieving accuracy of over 90% for all sampling methods.

• The highest adaptation the system gets to a specific user profile, the better accuracy the

system achieves on user state recognitions.

4.4 The Concept Validation Through a Smartphone Application

A real-time application is implemented in order to demonstrate the effectiveness of the pro-

posed framework. Blackberry RIM Storm II 9550 smartphone is chosen as target device. Blackberry

Java 7.1 SDK is used for programming language and Eclipse is used as software development tool.

Storm II consists of 3-axis accelerometer named ADXL346 from Analog Devices. This

sensor operates at 2.6 V as supply voltage and 1.8 V as drain voltage. Its current flow varies under

different operation modes and data rate selections (refer to Table 4.2). Turn-on and wake-up times

are determined by data rate, they are approximately defined by τ + 1.1 in milliseconds, where τ =

1/(data rate).

4.4.1 Observation Analysis

Observation analysis is carried out through a smartphone accelerometer sensor. In Fig-

ure 4.9, three-axis acceleration information for postural movements, such as sitting, standing, walk-

ing and running, is plotted. Like applied in simulations, only two-user state scenario is taken. These

are sitting and standing. Inference related to walking and running is considered as standing since

walking and running activities cause more variations over acceleration signal belonging to standing

activity.

To differentiate one activity to another, so many studies can be found in literature (refer

to Chapter 2). chapters proposing on-line solutions mostly use decision tree based classifications
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Figure 4.9: Three-axial accelerometer signals: the two-user-state case

with setting predefined fixed thresholds in order to cluster different states. On the other hand,

some chapters provide off-line solutions after recording relevant observation data. These solutions

propose a creation of high-dimensional feature vectors at first by applying many signal processing

techniques in order to extract signal characteristics such as energy, entropy, mean, rms, variance

etc. in regardless of analyzing signal deeper in terms of what is really supposed to do so that a

proper differentiation could be made. Then, feature vectors undergo classification and/or clustering

algorithms to match themselves with one of activities.

Nonetheless, applying complex processing techniques require much computational power.

Indeed, it may also cause rapid depletion in any mobile device battery. Differentiation of two-

user state scenario likewise applied in simulations may seem less expensive method in computation

of feature vectors. However, characteristics of observation data must be well analyzed under any

condition in order to stay away from redundant computational workload. In this sense, this chapter

proposes a combined usage of HMMs and pattern recognition techniques. The applied method is

very applicable to work on-line processing in order to actualize the proposed framework.
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Figure 4.10: Experiment: entropy rate analysis

4.4.1.1 Construction of Observation Emission Matrix

Observation emission matrix bjk is built after an on-line classification method is applied.

Applied method is presented in Figure 3.2. Two moving frame structures are used to store both

recent history of sensor samplings and recent history of observations. The first frame has a length

of 200 sensor samplings. Samplings are acquired by sensors and filled into the frame with a 50%

overlap value. Thus, it is aimed that transition from one state to another will not be missed. On

the other hand, the second frame has a length of 60 observations.

The recognition process of user state “sitting” and “standing” is explained in detail in

Chapter 3; however, the output of this process source the observation emission matrix of the proposed

framework as the follows:

bjk =

1 0

0 1

[
prob. of sitting

]
+

0 1

1 0

[
prob. of standing

]
(4.18)
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Figure 4.11: Experiment: power consumption vs. accuracy

4.4.2 Process

The system operates likewise how it is explained in Section 4.3.1 and Section 4.3.2. Default

system parameters π0 and adefaultjk are set initially. The length for the moving frame to store

observations is set to 60 observations which equals to one minute in system time. Therefore, system

parameters are updated periodically whenever the frame advances as long as its length. Initial time

for system construction is set 2 minutes. This duration is basically reserved to let classification

algorithms run properly and let system adjust initial adaptability to user. After initial 2 minute

long sampling insertions at 100 Hz, any power saving method can be applied. In that case, it takes

{1, 2, 4, 8} seconds to insert a new observation if {100, 50, 25, 12.5} Hz sampling frequencies are

adjusted respectively.

Same user activity profile is performed throughout 1-and-half hours application running

time for each power saving method.

4.4.3 Discussions

Firstly, Figure 4.10 shows the convergence of entropy rate throughout application running

time for each power saving method at different sampling frequencies. Aggressive sampling method
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Figure 4.12: Experiment: battery depletion

which takes 100 Hz as sampling frequency draws actual track of entropy rate. Circles over blue line

indicate difference in user behaviors. Since user states, such as sitting and standing, are recognized,

the frequentness of transition from one state to another cannot be much due to nature of human.

Therefore, user state transition matrices over time are desired as

a
[1:6]
ij =

0.9 0.1

0.1 0.9

 ,
0.85 0.15

0.1 0.9

 ,
0.8 0.2

0.1 0.9


0.75 0.25

0.1 0.9

 ,
0.6 0.4

0.1 0.9

 ,
0.5 0.5

0.1 0.9


As discussed in simulations, entropy rate converges late while samplings are collected at

sampling frequencies except for 100 Hz. That is also the reason why accuracy rate decreases. The

most significant result can be obtained from Figure 4.10 is entropy rate cannot sometimes converge

into any point where the plot lines belonging to fs = {12.5, 25, 50} Hz stop. When the frequentness

of state transitions increases, sampling frequency may not be fast enough to capture the activeness

of user profile. Therefore, the system cannot find any proper user state transition matrix to define

instant user activity profile. For instance, a(6) has equal probabilities for both residual frequentness

in user state and its transition to other user state. Thereby, the specific user activity profile may be

enough for being recognized at 100 Hz but not at other sampling frequencies. Note that at 12.5 Hz,
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87.5% of observation space is estimated. Another significant point is the blue line on the graph gets

closer to a(6) in Fig. 3.a since both transition matrices in application and simulation start to converge

into same pattern. Therefore, it is pointed out that the convergence of entropy rate belonging to an

HMM based HAR framework could distinguish a specific user activity profile. In addition to that,

the linkage between the entropy rate and the accuracy of the recognitions could be made as follows:

assume that a simple threshold is defined for entropy rate in (4.2.3.4) by εep = [µep −σep , µep +σep ]

where µep and σep are mean and standard deviation of ep respectively. Hence, an accuracy notifier

is set to inform whether or not current recognitions in user states are done accurately by

ϕ(s, t) =
1

(t− s+ 1)

t∑
τ=s

1(eτp∈εep )

Secondly, by using the accuracy notifier, the trade-off between accuracy in user state rep-

resentations and power consumption is given in Figure 4.11. Aggressive sampling method has the

best accuracy value of 100% whereas power consumption has the worst efficiency. Sampling at 50

Hz frequency (red line) provides 82% accuracy against 42% power consumption as long as relevant

entropy rate converges. Accuracy rate is over 50%, which means applied HMM works properly and

estimates missing observations properly enough. When an user profile has less frequent transitions

among user states, accuracy rate is seen over 90%. On the other hand, at a time slot where entropy

rate loses information, the sampling method at 100 Hz frequency has consumed almost 87% of its

power. Thus, efficiency in power consumption at 50 Hz frequency becomes (87−42)∗100/87 = 51%.

Power efficiency can be healed more if adaptability is satisfied earlier since a drastic fall is seen in

the beginning of curves on the graph. In addition, when entropy rate converges in a fixed value,

the curves become a concave-shaped because number of false user state recognitions are expected

to decrease. After losing entropy rate, the system retains previous user state transition values and

continues running. Therefore, a rapid decrease can be seen after a circle is marked on any curve.

Other sampling methods has (81%, 67%) and (60%, 70%) pairs of accuracy rate versus power effi-

ciency for 25 Hz and 12.5 Hz respectively where they are applicable. From application results, it

can be concluded that if adaptability to user profile is sufficiently satisfied, different sensor sampling

methods can be applied adaptively by periodically checking for the convergence of entropy rate. The

lower variance value entropy rate gets, the slower sampling period the system can adjust; or vice

versa.
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Thirdly, Figure 4.12 demonstrates battery lifetimes for each power saving method. The

target device has one-year old 1400 mAh battery named DX-1. Note that an used phone is examined

in order to depict a regular daily usage. The application starts running with fully charged battery

at each sampling method. While the application is running, the device is in stand-by mode and

connected to a 3G network. According to the results, the target device battery depletes after

approximately {9, 15, 24, 28} hours while operating at {100, 50, 25, 12.5} Hz sampling frequencies

respectively. In a stand-by mode, the device itself lasts up to 55 hours. Note that the Blackberry

Java 7.1. SDK only reveals remaining battery status information.

In simulations, power consumption per unit sampling at each sampling frequency, which is

proportional to (4.13), is modeled as

Θn∗12.5Hz = n ∗ Ωsample + (8− n) ∗ Ωidle (4.19)

In order to compare power consumption between simulations and application, the following

inequality derived from (4.19) needs to be approximately satisfied.

Θ100Hz
1
9 − 1

55

≈ Θ50Hz
1
15 − 1

55

≈ Θ25Hz
1
24 − 1

55

≈ Θ12.5Hz
1
28 − 1

55

This inequality with a small error margin proves a valid connection between simulations and

application in terms of achieved power efficiency. Relevant error stems from computational workload

on processor. With the help of this inequality, accelerometer sensor is modeled with sufficient success

during simulations. This information reveals that many sensors whose operation method is similar

to accelerometer, such as microphone, gyroscope, pulse meter and so forth can be modeled, in a

same way which this chapter proposes.

In summary, this chapter presents a generic system framework within the area of mobile de-

vice based context-aware applications. This research focuses on the inhomogeneity and the user pro-

file adaptability while examining the trade-off between accuracy in contextual inference from sensory

data and required power consumption due to data acquisition and computational processing. The

inhomogeneity is characterized by time-variant system parameters, and the user profile adaptability

challenge is modeled using the convergence of entropy rate in conjunction with the inhomogeneity.

Simulations are run and a smartphone application is implemented in order to demonstrate how

entropy rate converges in response to distinctive time-variant user profiles under different sensory
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sampling operations. In addition, user state representations are either recognized or estimated while

various energy saving strategies are being applied. During the recognition process, a sufficient num-

ber of signal processing techniques is applied to find out the best context-exploiting methods on the

sensory signal instead of applying computationally harsh pattern recognition methods. Moreover,

the power saving consideration is taken at the low-level sensory operations rather than just applying

less complexity in computations or changing transferring methods of data packets in the application.

In summary, the present research aims at creating and clarifying a HMM based framework to guide

the development of future context-aware applications by proposing an effective method to achieve a

fine balance in the defined trade-off analysis.
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CHAPTER 5

ANALYTICAL MODELING OF SMARTPHONE BATTERY AND SENSORS, AND
ENERGY CONSUMPTION PROFILES

The use of mobile devices, such as smartphones, is constrained by battery life. With the

ever-increasing computing power and hardware development in mobile devices and slow growth in the

energy densities of the battery technologies used in these devices, topics such as extension of battery

lifetimes and estimation of energy delivery by the batteries have been one of the primary focuses in

the mobile computing research field. Hence, modeling power consumption profiles belonging to new

generation mobile devices with the knowledge of the battery behavior will be important for energy

optimization and management in resource-constrained mobile computing systems. The battery

behavior is not consistent with respect to energy required by the device since the energy drawn

from the battery is not always equivalent to the energy consumed by the device itself. In addition,

the impact of different usage patterns on devices needs to be investigated to link to the projected

effect on the power consumption. By modeling the battery’s non-linearities, and understanding the

correlation between the usage patterns and the battery depletion leads one to discover suboptimal

energy reduction strategies in order to help continual improvement existing within the concept of

the context-aware mobile computing.

This chapter studies the battery modeled under the scope of the battery non-linearities

with respect to variant discharge profiles. In addition, the energy consumption behavior of some

smartphone sensors are analytically modeled including a real time application carried out for the

accelerometer sensor to investigate the behavior in detail. Energy consumption profiles are created

by assigning different pair of duty cycles and sampling frequencies during the sensory operations.

Finally, a Markov-reward process is integrated in order to model the energy consumption profiles

and represents the cost by each profile as an accumulated reward. The accumulated reward is also

linked to the battery modeling to make a connection between the usage pattern on sensors and the

battery behavior.
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5.1 Battery Modeling

The energy stored in the batteries is expressed by the product of two quantities which

are voltage (V olt, V ) and capacity (Ampere −Hour,Ah). The battery lifetime mostly depends on

the energy consumption rate, the discharge profile, e.g., the usage pattern, and the battery non-

linearities. At the high energy consumption rate, the effective residual battery capacity degrades

resulting in having a shorter battery lifetime. However, any precautionary change in the usage

pattern could extend the battery lifetime. More importantly, the physical non-linearities in the

batteries could recover the lost capacity while no or a very small amount of energy is consumed.

Battery modeling can help to predict the battery behaviors and then to extend the battery

lifetimes. In this regard, many different approaches have been used to model the battery properties.

The electro-chemical models [149–151] have been developed to describe chemical processes that take

place in the batteries. These models are known as the most accurate models to predict the battery

behaviors; however, these models are much complicated to be used in the applications belonging to

contemporary mobile devices by including non-linear differential equations as a function of time and

position of some battery properties, such as the voltage and current, the potentials in the electrolyte

and electrode phases, and reaction rate and current density in the electrolyte. In addition, electrical-

circuit models [152] were proposed in order to simulate batteries. These models seem simpler than

the electro-chemical models in terms of computational complexity; however, it requires much effort

to configure the relevant electrical-circuit model corresponding to a specific battery and also requires

a vast quantity of experimental data to better model the battery behaviors. Moreover, analytical

models [153] are described to model batteries at a higher level of abstraction instead of the electro-

chemical and electrical-circuit models. The major properties of the battery characteristic are given

by equations. These models mostly consider batteries in an ideal case, which would have a constant

voltage running and a constant capacity profile for every load throughout the discharge. In an ideal

case, L = C/I where the lifetime (L) is calculated with a constant capacity load (C) over the running

current (I). In constant, the voltage could drop during discharge and the effective capacity observed

lower under a heavy usage pattern in reality. Therefore, an approximation is proposed by introducing

Peukert’s law in [2], which proposes L = a/Ib where a and b are considered as approximately the

battery capacity and integer value (e.g., ideally 1) respectively in order of showing non-linearity.

However, this Peukert’s law would provide the same battery lifetime for all load profiles. The model
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would give good results for constant continuous loads, but not for variant or interrupt loads. In this

regards, an extended Peukert’s law, L = a/( 1
L

∫ L
0
Itdt)

b is also proposed in the same study to give a

new analytical battery model in terms of handling non-constant discharge profiles, i.e., variant loads.

Furthermore, stochastic models [154, 155] are presented to model batteries in an abstract manner

like the analytical models by discretizing the battery charge and creating probabilistic transition

among discharge level caused by variations in workloads. A very detailed study in battery modeling

can be found in [1, 4, 156]

Figure 5.1: A battery cell

A battery consists of electro-chemical cells which drive electro-chemical reactions in order to

convert chemically stored energy into electrical energy. A cell includes two electrodes, which are an

anode and a cathode, and the electrolyte, which separates the two electrodes, as shown in Figure 5.1.

The electrolyte may be liquid as in lead-acid batteries or solid as in lithium-ion batteries. During

the discharge, an oxidation reaction occurs at the anode. By this reaction, a reductant (R1) donates

m electrons which become available to be released into the connected circuit. On the other hand, at

the cathode, a reduction reaction occurs. By this reaction, m electrons are received by an oxidant

(O2):

R1 → O1 +me−

O2 + ne− → R2

Lithium-ion batteries are widely used in notebook computers and cellular phones due to

their high energy density and light weightiness. For example, the relevant chemical reactions for a
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Figure 5.2: Recovery effect (Courtesy of [1–4])
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Figure 5.3: Rate capacity effect

lithium-ion battery with the positive electrode (LiyMn2O4) and the negative electrode (LixC6) is

given in [153, 157] by

Liy−nMn2O4 + nLi+ + ne− 
 LiyMn2O4

LinC6 
 Li0C6 + nLi+ + ne−
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The theoretical capacity of the battery is a measure of the maximal charge. The ions

at the anode diffuses into the cathode when a current is drawn from the battery. If the current

drawn is too high, the speed of diffusion is slower than the rate of the ions reacted at the cathode.

This results in reduction occurring at the outer surface of the cathode and access to the inner

ions impossible; hence, a drop in the output voltage sourced by the battery is observed. As the

intensity of the current drawn increases, the loss of capacity due to the non-uniform deviation in

the ion concentration becomes significant, and thereby the cell voltage decreases, which is called

Rate Capacity Effect, see Figure 5.3. At the lower current drawn or when the discharge process

occurs in some intermediate or periodic time scale, the ions could have enough time to diffuse into

the inner cathode and let the charge recovery process take place. Therefore, the reacted ions at the

cathode become uniformly distributed. This non-linearity is called Recovery Effect, see Figure 5.2,

which depends on the discharge profile and the time length while no load is applied [158, 159].

Let C and Ć be considered as the theoretical and nominal capacity values of a fully loaded

battery. In addition, let x(t) denote the level of available charge and v(t) denote the level of available

theoretical capacity of the battery with the conditions of t ∈ [0, T ] and (v(0), x(0)) = (C, Ć).

According to the Nernst equation in electro-chemistry, the logarithm of electric charge determines

the terminal voltage that exists between the pair of electrode terminals, the potential E is determined

by E = E0 −KelnC where C is the concentration of electro-active species at the an electrode, E0 is

the equilibrium potential, Ke = RTa/nF with R the ideal gas constant, Ta absolute temperature,

n = 1 the valency of the lithium-ion battery reaction and F Faraday’s constant. By Faradays first

law, the mass of active material altered at an electrode is directly proportional to the quantity of

electrical charge which is transferred at the electrode in the battery reaction. Thus, it identifies the

capacity of the cell as a product of C. As a result, the terminal voltage Et of the cell at time t is

given by

Et = E0 +Kelnx̃(t), 0 ≤ t ≤ t0, (5.1)

where the normalized and dimensionless x̃ = x(t)/C ∈ [0, 1] is a measure of capacity, then the

battery is full where ˜x(t) = 1 and the battery is empty where x̃ = 0. Also, t0 notifies the battery life

at which Et in (5.1) reaches to a cut-off voltage Ec and battery stops functioning. For lithium-ion

battery, E0 = 3V and Ec = 2V where Ec ≤ E0.

93



www.manaraa.com

y x
h1

h2

c1-c

k

p

Load

bound charge available charge

Figure 5.4: The two-well KiBaM

The Kinetic Battery Model (KiBaM) is the most powerful analytical battery model rep-

resented firstly in [160] and widely used in recent studies of [156, 161, 162]. The name kinetic is

given to the model because of chemical processes taken place during the discharge. KiBaM considers

the stored charge to be distributed over two wells, the available-charge well, and the bound-charge

well as shown in Figure 5.4. The bound-charge well supplies electrons only to the available-charge

well; whereas, the available-charge well supplies electrons directly to the connected load. The rate

of charge flow between two wells depends on the conductance parameter k and the difference in

heights of two wells h1 and h2. The capacity ratio is denoted as parameter c and corresponds to

the friction of total charge stored in the available-charge well. Recall that x(t) denotes the available

capacity of the battery and v(t) denotes the total capacity where x(0) = Ć and v(0) = C > Ć,

so y(t) = v(t) − x(t) becomes the bound charge. On the other hand, the KiBaM was primarily

developed to model lead-acid batteries. Since these type of batteries have a flat discharge profile,

there are some shortcomings of KiBaM to model lithium-ion batteries, which are widely used in

today’s mobile devices. However, KiBaM could be still examined under some issues such as the

battery lifetime, the capacity rate and the recovery effect [156, 162]. To be able to extend the

battery model for lithium-ion cells, a solid state diffusion must be added into KiBaM. In solid state,

electro-activated spices at the electrodes experience a drift motion diffusion in addition to random

diffusion [163]. The drift motion can be added into flux as a negative charge, i.e., degradation on

the conductance parameter k.
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During the battery operation, the current drawn due to discharge is denoted by i(t) ≥ 0

with the average discharge rate of λ̂ = limt→∞
1
t

∫ t
0
i(s)ds if the limit exists. Then, the unit change

in the charge stored in both wells is given by the differential equations:

dx(t)

dt
= −i(t) + k(1− p)(h2 − h1)

dy(t)

dt
= −k(1− p)(h2 − h1)

(5.2)

with initial conditions of x(0) = c.C = Ć, y(0) = (1−c).C = C−Ć, h1 = x(t)/c and h2 = y(t)/(1−c)

.Also, p ∈ [0, 1] denotes a fraction of the flow of charge which has released from and sent back to the

bound-charge well. A very detailed study for further equation derivations can be found in [164].

When the battery supplies a continuous discharge, the available-charge well would be re-

duced rapidly, the difference of the height in both wells would grow since there is no time to move

charge from the bounded-charge well into the available-charge well, and the battery would not last

long. However, when the load is removed, a remedy charge flows from the bounded-charge well into

the available-charge well until h1 and h2 are balanced. This gives the idea of why a recover process

takes place when an intermittent charge is applied by variant loads.

By using (5.2), the total discharge process becomes independent from the charge flow gra-

dient:

v(t) = x(t) + y(t) = C −
∫ t

0

i(s)ds, t ≥ 0 (5.3)

By replacing i(t)dt with some measure of Λ(dt) , then v(t) = C − Λ(t). (5.2) turns into

dx(t) = −Λ(dt) + k(1− p)

(
y(t)

(1− c)
− x(t)

c

)
dt

dy(t) = −k(1− p)

(
y(t)

(1− c)
− x(t)

c

)
dt

(5.4)

The equivalent differential equation solution for (5.4) then becomes

x(t) = cv(t)− (1− c)

∫ t

0

e−k(1−p)(t−s)/c(1−c)Λ(ds)

y(t) = (1− c)v(t) +

∫ t

0

e−k(1−p)(t−s)/c(1−c)Λ(ds)

(5.5)

If a cell is subject to variant loads, the current drawn would vary with different discharge

rates by examining (5.3) accordingly, thereby (5.5) has solutions as follows:
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Figure 5.5: The KiBaM discharge model: an example

• Case 1: The constant discharge, Λ(t) = λt, where vλ(t) = C − λt on the bivariate

dynamic system of (vλ(t),xλ(t)).

xλ(t) = cvλ(t)− Cλ(1− e−k(1−p)t/c(1−c))

Cλ = λc(1− c)2/k(1− p)

(5.6)

• Case 2: The periodic regularly spaced pulsed discharge, Λ(t) = λr
∑t/r
j=1 δjr, where λr

denotes the released charge during the two consecutive pulses in r > 0 time intervals on

the system of (v(r)(t),x(r)(t)).

x(r)(t) = cv(r)(t)− (1− c)λr

t/r∑
j=1

e−k(1−p)(t−jr)/c(1−c)

= cv(r) − C
(r)
λ (1− e−k(1−p)(C−v(r))/λc(1−c))

(5.7)
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with the evaluation of geometric sum, C
(r)
λ = λr(1− c)/(1− e−k(1−p)r/c(1−c)) gives the

bursting points of the discharge profile due to the periodically drawn load.

Figure 5.5 shows an example investigating KiBaM behavior under different load profiles

and at fixed system parameters. The load profiles are characterized by mixture pairs of sampling

frequency, fs and the duty cycling on the load. Thereby, the load is defined by λ = 2fs where

fs = {50, 100} Hz, and r = n∆t where n={1/2, 3/4, 1}. For instance, if n = 1, it means the load

has a constant discharge profile, i.e., 100% duty cycling; whereas, if n ∈ {1/2, 3/4}, it means duty

cycle values of {50%, 75%} are applied on the load. In addition, the same power consumption rate

per unit time is considered during discharge. On the other hand, the battery parameters for KiBaM

are chosen as in C = 1400 mAh, c = 0.625, p = 0.1 and k = 4.5E−5(1/s). These parameters can

differ from one battery to another. However, by analyzing the given example, it is intended to see

how differently a battery discharges with respect to variant load profiles.

Figure 5.5 is normalized to the time point where the total discharge is expected according

to the full depletion in C where fs = 100 Hz and 100% for duty cycle. According to the results,

obtaining the depletion time less than 1 means the battery seems as if it was depleted even if it

still has charges in storage. In contrast, the battery life time is extended when the depletion time

is greater than 1. As a conclusion, two hypothesis can be made from the example in Figure 5.5.

First, the constant aggressive loading by (5.6) affects the discharge profile severely and yields to

deplete the device battery faster even if the battery still has a sufficient stored charge. The second

hypotheses by (5.7) is that battery recovery effect takes place when load gets lighter. The effect

increases the available-charge well and prolongs the battery lifetime.

5.2 The Modeling of Energy Consumption in Sensors

Sensors on mobile devices can be classified into two categories depending on operation

methods. The first category consists of sensors, such as accelerometer and microphone, which when

turned on to operate can run as long as needed. They need an external command to finish their

operations and to be turned off. When sampling operation is in progress, the relevant sampling

period in the operation can be adaptively changed if power considerations are taken. On the other

hand, the second category consists of sensors such as GPS, Wi-Fi and Bluetooth. When these

sensors are turned on, they follow their own dedicated protocols to operate and be in idle position
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Figure 5.6: Sensory operations

after the required work is done. Therefore, the idea of setting different sampling periods might not

be a option for this category. Exceptionally, although Bluetooth is selected in the second category

while scanning nearby users around, it might also be considered as a member of the first category

as well while its spectrum is being sensed and analyzed with different sampling periods.

The cost of energy consumed during any sensor operation does not only depend on instant

energy consumption per operation, but also depends on the duration of operation itself. In Fig-

ure 5.6, sensor operation structure for both categories is illustrated. The structure starts with an

initialization block which is in charge of waking the sensor up and then waiting for an acknowledge

response informing that the sensor is ready. For example, the study in [12] states that for GPS

operation, it is required at least 10 seconds to successfully synchronize with satellites. For other

sensors, especially the first category sensors, a little time duration would be sufficient to power sen-

sors up and then to set initial system requirements before sampling operations begin. The second

block is called processing. This block is dedicated to provide the mentioned efficiency in energy

consumption, which this chapter proposes. In this block, sensors start to capture user contextual

information and continue to do the same operation repeatedly. The third block terminates sensor’s

active duty. After all these three blocks are operated, the sensor becomes shut down until a new

duty is assigned.

The processing block is where the time length for duty cycle and sampling period are

adjusted dynamically for a sensor. Energy consumption is reduced by carefully assigning duty

cycles and sampling periods; however, these assignments cause a tradeoff between reduced energy

consumption and accurate sensing. If successive sampling intervals are too long, there would not

be a sufficient number of samplings to present real conditions, and eventually it would cause user

contextual information to be sensed incorrectly. On the other hand, in case where the intervals
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Figure 5.7: Duty cycling and sensor sampling

are too short, the energy saving would not be satisfied. The same approach can also be applied to

sensor sleeping time intervals. A longer sleeping time interval would reduce energy consumption;

nonetheless, the detection latency will be increased so that false detections could occur.

5.2.1 Preliminaries

Assume that a first category sensory operation is modeled by some certain time parameters,

such as tw, ts, tc and tr are given for a wake-up/initialization time, which could be a termination

time as well, a total time per sampling, a total time for operation cycle and a total time throughout

sensor running respectively. In addition, Ωs and Ωi are given as constant default sensor properties

for power consumption to make a sampling and to run idle respectively [15].

DC stands for duty cycle which indicates the active sensor operation (i.e., time interval

in which actually sensor samplings are being made) within tcycle. Thus, the number of sampling

occurrences is found by Ns = DC ∗tc/Ts where 0 ≤ DC ≤ 1 and Ts is sampling period (i.e., inversely

proportional to sampling frequency, 1/fs) which defines a waiting time between two consecutive

sensor samplings, see details in Figure 5.7.
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Then, a total energy consumption throughout sensor running is approximately given by

Θtotal ≈
[
(DC ∗ tc)

( N∑
k=1

(

(k−1)Ts+ts∑
(k−1)Ts

Ωs +
kTs∑

(k−1)Ts+ts

Ωi)

)
+ ((1−DC) ∗ tc)Ωi

]
(
tr − 2tw

tc
)

≈
[
NstsΩs + (tc −Nsts)Ωi

]
(
tr − 2tw

tc
)

(5.8)

while ignoring power consumption wasted during initialization and termination of the sensor.

ON OFF

wON

wOFF

λON

Figure 5.8: Interrupt Poisson Process (IPP)

5.2.2 The Modeling of Sensory Operation

Sensor operation can be modeled as 1-Burst process, also called ON-OFF sensory operation.

This process is a special case of Markov-modulated Poisson processes. This special case is called

Interrupted Poisson Process (IPP) and has two states: ON and OFF, as shown in Figure 5.8.

According to the process, the traffic is Poisson {F (x) = 1 − e−λx}, but the traffic is generated

at deterministic intervals in ON state with a constant rate λon and a length of mean time, i.e.,

transition time, 1/won. In contrast, there is no traffic in OFF state, and the intensity of residency

in this state is given by woff .

The traffic in IPP can be seen as discrete-event simulator for samplings in sensory operations.

Thus, the intensity rates become λon = fs, won = (DC ∗ tc)−1 and woff = ((1−DC) ∗ tc)−1.

Note that alternatively the burst periods can be modeled by Weibull distribution {F (x) =

(1−e−λxα

)} where α > 1 yields to have more deterministic variations. Then, sampling intervals, i.e.,

inter-arrival time in traffic, T = 1/λon are generated. In addition, the silence periods can be derived

from Pareto distribution, which is known as tail process, {F (x) = (1− (k/x)α)} where α > 1 yields

to have more deterministic variates. On the other hand, in case of no silence periods, Erlang-K

model, which is stochastically sum of K times i.i.d. random variables with each having a Poisson
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Table 5.1: The power consumption ratio in the sensor drain per each operation cycle: tc = 2s, and
the comparison applied based on (50%, 12.5 Hz)

(DC(%), fs (Hz)) Ratio

(100, 100) 4.45
(50, 100) 2.58
(100, 50) 2.85
(50, 50) 1.80
(100, 25) 1.75
(50, 25) 1.24

(100, 12.5) 1.26
(50, 12.5) 1

distribution, can be considered by setting λon = 2fsK and the expected frequentness of consecutive

on/off times becomes K/(2fsK).

5.3 A Case Study: A Real-Time Application by The Smartphone Accelerometer Sen-

sor

The least power consuming sensor on today’s smartphones is the accelerometer [147]. There-

fore, the accelerometer sensor is used in the implementation of a real-time application.

The Blackberry RIM Storm II 9550 smartphone is chosen as the target device for a real-time

context aware application. The Blackberry Java 7.1 SDK is used for programming and Eclipse is

used as the software development tool. Storm II consists of 3-axis accelerometer named ADXL346

from Analog Devices. This sensor operates at 2.6 V as supply voltage and 1.8 V as drain voltage.

Its current flow varies under different operation modes and data rate selections (refer to Table 1.).

The drawn current values at specific sampling frequencies give an idea of how much power could

be consumed in different accelerometer sensor operation modes. Turn-on and wake-up times are

determined by data rate and a relevant formula is given approximately by τ + 1.1 in milliseconds,

where τ = 1/(data rate) [148].

By using IPP sensory modeling together with the data obtained through Table 4.2, and

(5.8) with parameter setting of tc = 2s, the power consumption ratio in the sensor drain per each

operation cycle under variant DC and fs values are shown in Table 5.1. According to the results,

the smartphone accelerometer sensor consumes 4.45 times more power per each operation cycle in

aggressive sampling mode in comparison with the most non-aggressive sampling mode.
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The accelerometer sensor needs to be modeled in order to examine power efficiency achieved

under different sampling and duty cycling strategies. By using (5.2) and (5.8), the power consump-

tion model within each tc can be considered as follows:

Θtc =

DC∗tc∑
0

(Ls(x, y)−Rs(x, y)) +
tc∑

DC∗tc

(Li(x, y)−Ri(x, y)) +
tc∑
0

Lb(x, y) (5.9)

• (x, y) is the bivariate dynamic battery system parameters which define capacity values

stored inside the bound-charge well and the available-charge well in KiBaM.

• Ls and Li are denoted as the discharged load when sensor samplings are being made and

the sensor is being idle respectively.

– If DC = 1, then the sensor makes samplings continuously. This means the

effect of Li can be ignored due to the constant discharge profile. Thus, recall

that the model follows (5.6).

– If DC ∈ [0, 1), then the sensor makes samplings in defined intervals. In this

case, the effect of Li cannot be ignored so that the model follows (5.7).

• Rs and Ri are battery recovery effects in KiBaM to define the remedy charge flowing from

the bound-charge well to the available-charge well when sensor samplings are being made

and the sensor is being idle respectively.

• Lb stands for the background load occurring instantly within smartphone operation. For

instance, while the application is running, the device is in stand-by mode and only con-

nected to a 3G network. There is no other system functionality being executed while the

sensor operates.

The application runs until initially fully-loaded one-year-long used smartphone battery de-

pletes. Only one constant pair of sampling frequency and duty cycle is applied as operation pa-

rameters to the accelerometer sensor at each application run. Sampling intervals are modeled as

Ii = n/fs where n and fs are an integer value and sampling frequency respectively. Ii defines a

waiting time between two consecutive sensor samplings; n = {1, 2, 4, 8} and fs = 100 Hz are taken.

On the other hand, values of {0.5, 0.75, 1} are taken for DC. tc is also taken as 1 sec.

Results are shown in Figure 5.9. Note that the Blackberry Java 7.1. SDK only helps to reveal

remaining battery status. According to results, applying a more aggressive sampling methodology
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Figure 5.9: The battery depletion due to the accelerometer sensor

causes faster battery depletion. In addition, the lower value of DC makes the battery recover effect

more significant and thus prolong the battery lifetime.

According to (5.8), energy consumption per time of (nmax/fsmax = 8/100) under different

sampling frequency is modeled as

Θn∗12.5Hz = n ∗ Ωsample + (nmax − n) ∗ Ωidle (5.10)

Then, with the help by (5.10), (5.9) turns into

Θtc =
DCtc

nmax/fsmax
(Θn∗12.5Hz − rs) +

(1−DC)tc
1/fsmax

(Ωidle − ri) + lb (5.11)

where rs, ri and ln are considered having a stable energy consumption rate per unit time.

Since the parameters rs and ri in (5.11) cannot be verified through smartphone program-

ming, in order to compare energy consumption between the analytical model and the application,

the following inequality needs to be approximately satisfied.
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Θreal100Hz,DC=1

Θsim100Hz,DC=1

≈
Θreal50Hz,DC=1

Θsim50Hz,DC=1

≈
Θreal25Hz,DC=.5

Θsim25Hz,DC=1

≈
Θreal12.5Hz,DC=1

Θsim12.5Hz,DC=1

Due to the effects of rs and ri are more significant when DC ̸= 1. Hence,

1
9.75 − 1

132

Θsim100Hz,DC=1

≈
1
12 − 1

132

Θsim50Hz,DC=1

≈
1
24 − 1

132

Θsim25Hz,DC=1

≈
1

26.75 − 1
132

Θsim12.5Hz,DC=1

The inequalities with a small error margin prove a valid connection between the analytical

model and the application in terms of power efficiency achieved. Relevant error would stem from

computational workload on the processor and non-linear functionality of the battery. With the

help of these facts, the accelerometer sensor is analytically modeled with sufficient success. This

information reveals that many sensors whose operation method is similar to accelerometer, such as

microphone, gyroscope, pulse meter and so forth, can be modeled in a similar way.

5.4 Sensor Management

In this section, the battery discharge profiles are seen within the concept of Markov Reward

process.

5.4.1 Discrete-Time Markov Reward Model

Suppose that an inhomogeneous semi-Markov chain is given as a statistical tool for handling

sensor managements. The chain consists of a finite state space S = {1, ..., N}, the state transition

density matrix Q, and the state transition matrix P where Q,P ∈ RNxN . In addition, a reward

structure can be attached to this on-going chain, and can be thought of a random variable associated

with the state occupancies and transitions. Thus, the reward can depend on the time of entrance in

a state defined in this chain. r(s, t) is given where the reward is accumulated from s to t, t ≥ s.

This process considers ”reward” being paid/received at each time that system passes for a

given state. Rewards are defined in two different ways. The first, called permanence/rate reward,

represents the reward given for the permanence in a state and is denoted by ψ. On the other hand,

the second, called transition/impulse reward, represents the reward given for a state transition and

is denoted by γ. When the reward increases at a given rate while hanging in a state it is referred to

as rate reward accumulation; whereas, when the reward increases instantly at a state transition of

the underlying process it is referred to as impulse reward accumulation. The reward processes can be
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positive or negative and discounted or non-discounted. Therefore, a variable called interest/discount

rate, denoted by ϱ, is introduced into the reward processes within the definition of discount function,

φ.

The general evolution equation for reward process for inhomogeneous semi- Markov chain

is given by

Vi(s, t) = (1−Hi(s, t))

t∑
v=s+1

ψi(s, v − s)φ(s, v) +
∑
l

t∑
υ=s

bil(s, υ)φ(s, υ)(γil(υ) + Vl(υ, t)) (5.12)

The LHS represents the expected present value of all received/paid discounted rewards

from time s to t given that process enters into state i at time s. Whereas, the first element of RHS

represents the rewards in case there is no state transition from the state i to any from time s to t.

The second element represents the rewards after a possible state transition occurs.

(5.12) can be redefined for an immediate case where the total reward is an aggregation of

rewards earned both at previous time and at current time as the following structure:

V
(t)
i (s) = V

(t−1)
i (s) + φi(s, t)

∑
l

p
(t−1)
il (s)ψl(s, t) +

∑
j

plj(t)γlj(s, t) (5.13)

which, i.e., collects the reward by either continuity in the same state or transition to another state.

The interest rate, ϱ, is a constant value; however, it can change by implying forward rates,

ϱx. Each time that system is in state i it is paid a reward ψi which should be discounted for each

epoch at time s. Thus, the paid/received rewards change in time.

φ(s, h) =


1, if s = h∏h
x=s+1 (1 + ϱx)

−1, if s < h

(5.14)

with the condition of 0 < φ(s, h) ≤ 1.

The permanence reward, ψi(s, t), may vary in time or set fixed as ψi.(t− s).

5.4.1.1 Battery Case

Assume that reward is seen as power consumption per unit time while a mobile device

battery is discharging, and states are defined as the battery discharge profiles. Due to the present

power consumption being independent from future power consumption in a mobile device discharge
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model, the discount factor would be 0. The immediate reward is also ignored because it could be

seen as a difference of permanence rewards during a state transition.

The total accumulated reward while residing in state i from time s to t follows the difference

equation of (5.13) as in

∆t(vi(s, t)) = ψi(t, vi(s, t)) (5.15)

with the distribution of FV (t, v) = Pr{V (t) ≤ v}.

For modeling a battery, two different rewards could be considered. By recalling (5.2) along

with (5.15), the first reward indicates the power consumption in each state i; whereas, the second

reward belongs to degradation in maximum battery capacity, i.e., the recovery effect which makes a

remedy charge flow migrate from the bound-charge well into the available-charge well in KiBaM:

∆t(vi,1(s, t)) = ψi,1(vi,1(s, t), vi,2(s, t))

= Ii − k(1− p)(h2 − h1)

∆t(vi,2(s, t)) = ψi,2(vi,1(s, t), vi,2(s, t))

= k(1− p)(h2 − h1)

(5.16)

where h2 > h1 > 0 and vi,1(s, 0) = vi,2(s, 0) = 0.

The joint distribution of the accumulated rewards for a specific state i in (5.16) becomes

F
(V1,V2)
i (t, v1, v2) = Pr{S(t) = i, V1(t) ≤ v1, V2(t) ≤ v2} (5.17)

with boundaries of min{v1, v2} = {0, 0} and max{v1, v2} = {c.C + v2, (1 − c).C} since the battery

always has a predefined capacity C, which is distributed by a fraction factor c over two wells in

KiBaM.

Therefore, the battery gets empty by evaluating (5.17) when V1(t) ≥ Ć + V2(t),

Pr{V1(t) ≥ Ć + V2(t)} =

Ć+vx∑
v1=0

vx∑
v2=0

∑
i∈S

F
(V1,V2)
i (t, v1, v2) (5.18)

where vx ≤ C − Ć. If vx ̸= C − Ć when the battery gets empty, it gives a clue that a constant high

load was being applied to the battery and that made the recovery effect not to take place.
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5.4.1.2 Sensor Utilization Case

Assume that a set of DC and a set of fs are given by {1, 0.75, 0.5} and {100, 50, 25, 12.5} Hz

respectively. In addition, let the state space lie over two sub-spaces, which are sets ofDC and fs, S =

{SDC × Sfs}. Thus, the state space is defined by S = {S{1,100}, S{1,50}, ..., S{0.75,100}, ..., S{0.5,12.5}}

The corresponding reward for each state can be obtained by using (5.8) and Table 5.1. The

power consumption at each fs is proportional to flowing drain current, IDD under a stable drain

voltage supply due to P = V I. Thus, the reward for staying in a state can be defined as

ψ{DC=j,fs=k},1 = Θ{DC=j,fs=k}/Θ{(DC=1,fs=100} (5.19)

where 0 < ψ{j,k},1 ≤ 1 since a pair of (DC = 1, fs = 100) is the most aggressive sensor utilization

method in terms of power consumption.

The ascending order of ψ{j,k}→{i},1, ∀j ∈ DC, ∀k ∈ fs according to Table 5.1 defines state

characterization: Si = {S{0.5,12.5} = 1, ..., S{1,100} = N} where N = length(DC)× length(fs).

The second reward can be found by derivation from (5.2) and (5.6) if a state transits into

another state at s

ψj,2(s, t) =
c(1− c)

k
(ψi,1 − ψj,1)(1− e−k(t−s)/c(1−c)) (5.20)

where t ≥ s and ψi,1 > ψj,1 since the recover effect takes place whenever a lower load is being

applied.

This chapter investigates how any change in sensory operations affects the power consump-

tion profiles triggered by the sensor and depletion on the battery. Understanding the nonlinear

battery behavior with respect to diverse operation methods in sensors, a tolerable power consump-

tion balance could be achieved while employing context aware services in resource constrained mobile

devices.
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CHAPTER 6

CONTEXT-AWARE FRAMEWORK: A COMPLEX DESIGN

The ever-increasing technological advances in embedded systems, together with the prolifer-

ation of growing development and deployment in MEMS technologies, have enabled smartphones to

be re-purposed in order to recognize daily occurring human based actions, activities and interactions

which mobile device users encounter in their surrounding environment. Recognizing human related

event patterns, called user states in this chapter, accurately enough could give a better understand-

ing of human behaviors, and more significantly, could reveal a chance for assisting individuals in

order to enhance the quality of human lives. Therefore, the inference of a vast variety of human

activities in a computationally pervasive way within a diverse context acquired by a series of sen-

sory observations has drawn much interest in the research area of ubiquitous sensing. However,

the evolution of the ubiquitous sensing on the resource-constrained mobile devices have empowered

Cyber-Physical Systems (CPS) [120] to emerge as a promising solution for the dynamic integration

of highly complex and rich interactions among the modeling computational virtual world and the

exploiting heterogeneous and unobtrusive physical world.

By utilizing smartphone sensors within the concept of ubiquitous sensing, it would bring

about some drawbacks on the resource-constrained hardware platforms. First, continuously captur-

ing user context through sensory data acquisitions, and then inferring desirable hidden information

from the context would put a heavy workload on the smartphone processor and sensors. Thereby,

these operations cause more power consumption than the device itself does while a regular run, and

the device battery would deplete rapidly. To better understand this issue, an application example

in [11] can be examined. Accordingly, the accelerometer sensor built-in HTC Touch Pro is employed

at a fixed sampling frequency. When the phone receives data samples from the accelerometer, the

overall power consumption on device increases by 370 mW; whereas the accelerometer should con-

sume less than 1 mW while being active according to the data sheet. Even if the accelerometer itself

wastes very little power to operate its functionality, the phone, together with its main processor
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and other hardware components, causes much more power consumption while being in process to

accomplish a contextual sensory data extraction. Another example can also be given by [12]. It

is reported that today’s mobile devices are not feasible to employ all sensors at the same time by

providing an example of Nokia N95 mobile phone with a fully-charged battery. It is experimentally

examined that the phone battery would get totally depleted within six hours if GPS is switched on

permanently even it is not being actively used; whereas the same battery supports a conventional

telephone conversation up to ten hours.

The best energy saving algorithm would consist of powering a minimum number of sensors

to recognize any user activity [33, 165]. The algorithm assigns different duty cycles to different

sensors so that at any time, depending on an application, there might be some sensors running;

others might be shut down. For example, if user stays indoors, it is not necessary to power GPS

sensor. In contrast, accelerometer and Wi-Fi might be turned on. Another approach would also

consider the duty cycling approach at the low level sensory operations. With this approach, the

wave form to power a sensor is tuned according to a desired power efficiency achievement. Besides

adjustable duty cycles, adaptively changing sampling periods would be another approach [6]. By

changing sampling periods as needed, the total number of sampling occurrences either increases or

decreases. As a result, relevant power consumption will do accordingly. Above of all, an adaptive

sensor management mechanism to assign a mixture pair of duty cycles and sampling periods, which

is proposed in this chapter, would be a cure of consuming less power while running context-aware

applications accurately enough.

In summary, to be able to run context extracting/inferring applications, energy saving meth-

ods must be considered and applied for the mobile devices; however, this jeopardizes the accuracy,

i.e., quality of service, provided by the applications, and thereby it creates a tradeoff between the

power consumption caused and the service accuracy provided by the context-aware applications.

This chapter proposes a novel framework as shown in Fig. 6.1 in order to run a HAR based

application while achieving a fine balance in the defined tradeoff. The framework consists of a

context inference module including an observation analysis module and a statistical machine to

acquire and infer the desired contexts through a sensor and to represent user activities, and also a

sensor management system to prolong device battery lifetimes. The ultimate goal of this chapter

is to recognize user activities accurately and to make sure power efficiency is maximized. Most

importantly, this research intends to create and clarify an effective HMM-based framework included

109



www.manaraa.com

α0 = π0

ϑ1

Observations

S=1

p
ij

State

Recogntion

State

Estimation

ojk

rec.α1

Fij

X0

T0

X1 Sojourn Time X2T1

Transition 

Time

T2

s t

Hi

S0

ϑ3

S=2 S=2

p
ij

ojk

rec.α3 est.α4

ϑ2

S=1

p
ij

rec.α2

t=1 t=2 s= (t=3) t=4 t

ojk

Classification

Processing

S
a

m
p

li
n

g
s[

fs
/n

]

Sensor

O
b

se
rv

a
ti

o
n

 A
n

a
ly

si
s

Statistical Machine

SENSOR MANAGEMENT SYSTEM: 3 Intuitive Solutions + CMDP + POMDP

THE PROPOSED FRAMEWORK

Accuracy NotifiersActions

x

Duty Cycle

Sampling 

Frequency

CONTEXT INFERENCE MODULE

Figure 6.1: The operational work-flow of the proposed framework

with power saving methods at the low-level sensor operations in order to guide the development of

future context-aware applications.

There are a few distinctive novelties shown in Figure 6.2 that this chapter exposes as follows:

• A light-weight and unsupervised classification algorithm is applied over sensory data to

produce observations as the inputs of HMM-based statistical machine.

• User profiles are considered time-variant (inhomogeneity) in the statistical machine.

• Adaptability problem is defined for time-varying user profiles, and a relevant solution is

given by introduction of the entropy production rate.

• The adaptive statistical machine regulates the power saver mechanism.

• The analytical modeling of the accelerometer sensor is provided.

• A power saver mechanism is provided by utilizing a mixture pair of duty cycling and

adaptive sampling in order to prolong mobile device battery lifetimes.

• Five different sensory operation methods are provided: three intuitive solutions, Con-

strained Markov Decision Process (CMDP) and Partially Observable Markov Decision

Process (POMDP) based sub-optimal solutions
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• Missing observations occurred due to the power saver mechanism are found according to

inhomogeneous semi-Markovian process.

• A real time smartphone application is implemented to show the power consumption anal-

ysis of the different sensor operations, and a well examined offline process is also simulated

in presence of application results and the sensor model in order to show the effectiveness

of the proposed framework and power saving methods.

The least power consuming sensor on today’s smartphones is the accelerometer [147]. There-

fore, the accelerometer sensor is considered for use in the implementation of HAR based applications.

The Blackberry RIM Storm II 9550 smartphone is chosen target device. Storm II consists of 3-axis

accelerometer named ADXL346 from Analog Devices [148]. While application is running, the target

smartphone is only connected to a 3G network, and the background operations kept minimal. In

addition, for the sake of simplicity, a two-user state, which are ‘sitting’ and ‘standing’, consisting
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Figure 6.2: The properties of context-aware framework in mobile computing
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Table 6.1: Summary of important symbols in chapter 6
Symbol Definition (Section where the symbol is first used)
St user state (6.2.1)
Sτ
s Markov chain, or sequence of user states (6.2.1)
ϑt observation (6.2.1)
ϑτ
s sequence of observations (6.2.1)
o observation emission matrix (6.2.1)

n, s, t, τ time indexes throughout the chapter (6.2.1)
i, j,m indexes for user states (6.2.1.1)
ξ inhomogeneous Markov process (6.2.1.1)
qij user state transition rate (6.2.1.1)
Q user state transition density matrix (6.2.1.1)
pij user state transition probability (6.2.1.1)
P user state transition matrix (6.2.1.1)
πi initial user state probability (6.2.1.1)
Fij probability of waiting time in a state (6.2.1.2)
Hi probability of leaving a user state (6.2.1.2)
di a random time distribution (6.2.1.2)
Fj filtered probabilities (6.2.1.3)
Pj predicted probabilities (6.2.1.3)

Ŝt estimation of user state (6.2.1.3)
N total number of user state transitions (6.2.1.4)
Ni total number of passages in a fixed user state (6.2.1.4)
ep instantaneous entropy production rate (6.2.2)
ϕ accuracy notifier (6.2.2)
a actions (6.2.2)

tsuff sufficient time to trigger an action (6.2.2)

SR, or SR2
1D, or 2D state space for reward process (6.3.1)

r, w indexes for states ∈ SR (6.3.1)
l, k indexes for l ∈ DC and k ∈ fs (6.3.1)

Θtspan total power consumption for a spanning time (6.3.1)

ψSR reward process attached to ongoing SR (6.3.1)
V total received reward, i.e. power consumption (6.3.1)
u optimal policies in CMDP and POMDP (6.3.4)
Pa state transition matrix under actions (6.3.4)
I identity matrix (6.3.4)
λ belief vector (6.3.5)
Ra rewards according to actions (6.3.5)

statistical machine is considered in the framework. However, more complex models can be applied

as well by using same system approach.

In the following sections, Section 6.1 gives the relevant prior research. Section 6.2 is dedi-

cated to the total explanation of the context inference module which encapsulates the analysis of the

sensory data and the creation of the statistical machine in order to represent true user activities and

behavior. Section 6.3 includes the analytical model of sensor utilization, and power saving solutions

to balance the tradeoff. Section 6.4 is left for performance analysis of the proposed method. Finally,

Section 6.5 is for conclusion and future work. In addition, the summary of important notations used

throughout the chapter is listed in Table 6.1.

6.1 Prior Works

The pervasive context aware mobile computing, which captures and evaluates sensory con-

textual information in order to infer user relevant behaviors, has been becoming a well established

research domain. Most studies rely on recognition of user activities and definition of common user
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behaviors, especially with the realm of Human Activity Recognition (HAR) [12, 28] and location-

based services [147, 166]. In addition, researchers have been aware of the existing trade-off. However,

most works provide some partial answers to the tradeoff. It is difficult to be said that power saving

considerations are significantly taken at the low-level physical sensory operations. Especially, there

is not a framework construction that intends to apply adaptively changing duty cycles and sampling

period on a sensory operation like this chapter intends to propose. In contrast, most works done so

far emphasize either to set a minimum number of sensors when needed in a context-aware application

or to maximize power efficiency by solely applying less complexity in computations or by changing

transferring methods of data packets.

From the literature search, it is important to refer [12], which proposes a hierarchical sensor

management system. The system improves the device battery life by powering a minimum number

of sensors. Unfortunately, sensors have fixed duty cycles whenever they are utilized and they are

not adjustable to respond different to user behaviors. The hierarchical sensor management system

is also studied in [28], which achieves energy efficiency and less computational complexity by only

performing continuous detection of context recognitions when changes occur during the context

monitoring. Moreover, the advantage of a dynamic sensor selection scheme for accuracy-power

tradeoff in user state recognition is demonstrated in [33, 165, 167, 168]. [6] also use different sampling

period schemes, which are assigned according to the stream of context events, for querying sensor

data in continuous sensing mobile systems to evaluate energy-accuracy tradeoffs. The same solution

attempts but at this time for localization applications can be found in [147], which describes a system

for saving energy consumption in sensing localization applications for mobile phones. Also, [166]

studies energy efficiency in mobile device based localization, and the authors show that human

can be profiled based on their mobility patterns and thus location can be predicted. The proposed

system achieves good localization accuracy with a realistic energy budget. On the other hand, energy

saving in wireless sensors is a well studied topic. Relevant studies can be found in [169, 170]. In

addition, for the studies on energy-hunger sensors and for the solutions to achieving energy efficiency

by employing them, it can be referred to [171].

6.2 The Context Inference Module

The context inference framework consists of two main modules as shown in Fig. 6.1, which

are sensory data acquisition and analysis, and a statistical machine. The first module receives raw
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sensory readings (i.e., extracted user contexts through mobile device based sensors) as inputs. These

readings undergo a series of signal processing operations, and eventually end up with a classification

algorithm in order to provide desirable inferences about user relevant information for context-aware

applications. A required classification algorithm differs according to the inference of the interested

context through a specific sensor. The probabilistic outcomes of the classification algorithms source

the inputs of the second module.

The second module choses a Discrete Time Inhomogeneous Hidden Semi-Markov Model

(DT-IHS-MM) as the desired statical machine. Using Hidden Markov Models (HMMs) in order

to infer mobile device based human-centric sensory context have already been applied in Human

Activity Recognition (HAR) [140]. However, this chapter intends to expand the properties of the

statistical machine so as to obtain a better realization in context-awareness. First, the concept

of Markov Renewal Process is adopted to describe the functionalities of user behavior modeling.

Second, the inhomogeneity is introduced in order to characterize time-variant user behaviors so that

the framework could adapt itself to dynamically changing user behaviors. Third, the semi-Markovian

feature is added in order to specify aperiodically received discrete time observations through sensory

readings. Fourth, the estimation theory is included in case of missing sensory inputs. Finally, the

entropy rate is provided in order to demonstrate the accuracy of inferences made by the framework

since there is not an absolute solution to actually calculate the accuracy of a real-time running HAR

based context-aware application. The convergence of the entropy rate is considered as output of the

framework, which will be used later by a sensor management system in Section 6.3.

6.2.1 Inhomogeneous Hidden Semi-Markov Model: A Statistical Machine

Classification algorithms produce observations (i.e., visible states), ϑt, of DT-IHS-MM.

Amongst observations, there is only one observation expected to provide the most likely differentia-

tion in the selection of instant user behavior. This observation is marked as instant observation, ϑT ,

which also indicates the most recent element of observation sequence, ϑT1 , of DT-IHS-MM. On the

other hand, user states, sitting and standing, are defined as hidden states, S, of DT-IHS-MM since

they are not directly observable but only reachable over visible states. Therefore, each observation

has cross probabilities to point a user state. These cross probabilities build an observation emis-

sion matrix, o, which basically defines decision probabilities to pick any user states from available

observations.
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In addition to that, the transition probabilities among user states might not be stationary

since a general user behavior changes in time. Thus, it is expected from a user state either to transit

into another user state or to remain in the same with a different probability. These occurrences

build a time-variant user state transition matrix, p.

6.2.1.1 Basic Definitions and Inhomogeneity

Let an inhomogeneous Markov process exist as ξ = {ξ(t), t ≥ 0} with a user state space of

S = {1, 2, ...,M} and let Q(t) = qij(t) where {i, j} ∈ S and t ≥ 0 be a transition density matrix of ξ.

If Q satisfies both 0 ≤ qij(t) ≤ ∞ and qi(t) = −qii(t) =
∑
i ̸=j qij(t), then Q is called a conservative

inhomogeneous transition density matrix function on S.

qij(t) represents jump or transition rates from user state i to user state j at time t. Whenever

i = j, it means that the current user state remains unchanged, or i.e., a dummy transition occurs.

Moreover, suppose that a user state transition probability matrix P (s, t) = {pij(s, t) =

Pr(S(t) = j | S(s) = i)} where t ≥ s ≥ 0 together with Q satisfies both forward and backward

Kolmogorov’s equations [172], which assume to have limt↓s ∂pij(s, t)/∂t = qij(s), then S becomes

an inhomogeneous Markov chain with the transition density of Q. The chain can revisit a user

state at different system times, and also not every user state needs to be visited. Hence, there is no

requirement that user state transition probabilities must be symmetric (pij ̸= pji) or a specific state

might remain in the same in succession of time (pii = 0).

Furthermore, let an initial user state π(t) = {πi(t) = Pr(S(t) = i)} satisfy the Fokker-

Planck equation [173]: dπ(t)/dt = π(t)Q(t).

6.2.1.2 The Working Process

Let ξ = {ξn, n ∈ N} be redefined as an inhomogeneous irreducible discrete Markov process

with a user state space of S. The process evolves from S0 as initial user state and stays in there

for a non-negative length of time X1 until going into another user state S1. Then, it stays in the

new user state for X2 before entering into S2, and so on. As indicated in [174–176], this process is

a two-dimensional or bivariate stochastic process in discrete time called positive (S − X) process:

(S −X) = ((Sn, Xn), n ≥ 0) with initial of X0 = 0 where Xn is called the successive sojourn times.

Xn is the time spent in state Sn−1 which defines inter-arrival times. There is also another

time variable Tn introduced for the definition of times at which state transitions occur. This random
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time sequence is called renewal sequence, and it is given by Xn = Tn − Tn−1, n ≥ 1 with the initial

statuses of {X0, T0} = {0, 0}.

The Markov renewal process is now redefined over two-dimensional process of (S − T ) =

((Sn, Tn), n ≥ 0) by

Qij(s, t) = Pr(Sn+1 = j, Tn+1 ≤ t | Sn = i, Tn = s), (6.1)

where Tn represents n-th renewal time at which a user state transition happens.

The probability of waiting time, also called conditional distributions of sojourn times, for

each user state i in the presence of (6.1) and information about the successively followed user state

is given by

Fij(s, t) = Pr(Tn ≤ t | Sn−1 = i, Sn = j, Tn−1 = s),

=


Qij(s, t)/pij(s), pij ≥ 0,

1, pij = 0.

(6.2)

In addition, with the help of (1) and (6.2), the probability of the process leaving the user

state i, also called sojourn times distributions in a given user state, from time s to t is introduced

by

Hi(s, t) = Pr(Tn ≤ t | Sn−1 = i, Tn−1 = s),

=
∑
j

pij(s)Fij(s, t) =
U∑
j ̸=i

Qij(s, t).
(6.3)

If F (s, t) = F (t − s), s ≤ t, then the kernel Q only depends on t − s, which it yields to

have Q(t− s) = p ∗F (t− s) being called an inhomogeneous semi-Markov process. The semi-Markov

process [177, 178] indicates that the sojourn time in each state might have a random distribution,

di(t)
1, see Figure 6.3, which can depend on the next user state to be visited. Thereby, this yields to

1The proposed solutions in Section 6.3 regulate the sampling times in the sensory operations, and change the time
distribution accordingly.
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Figure 6.3: Semi-Markovian feature by sensor samplings

find the probability of a user state transition being occurred at time t:

bij(s, t) =


Qij(s, t) = 0, t ≤ s

Qij(s, t)−Qij(s, t− 1), t > s.

(6.4)

Also, for each waiting time, a user state is occupied. Therefore, the transition probabilities

are defined with (6.3) and (6.4) by

pij(s, t) = Pr(St = j | Ss = i) = δij(1−Hi(s, t)) +
∑
m∈M

t∑
τ=1

bim(s, τ)pmj(τ, t), (6.5)

where δij represents the Kronecker symbol.

The first element of RHS where di(t) = 1 if i = j notifies the probability of remaining in

user state i at time t without any change in context from time s; and, the second represents the

probability of a user state transition from state i in some way to user state j and staying in this

new user state at time t.

6.2.1.3 User State Representation Engine

User state representation engine infers an instant user behavior in light of prior knowledge

of a human behavior pattern, i.e., system parameters defined in Section 6.2.1.1, and the availability

of sensory observation at a decision time. If sensory observation exists, the applied process is called

recognition method; otherwise, estimation method, see Fig. 6.4.
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Figure 6.4: User state representation engine: recognition and estimation models

Let ϑt denote an observation at time t which is associated with user state St, and let oi(ϑt)

be the probability of observing ϑt from given St = i. Thus, oi(ϑ
t
s) =

∏t
t′=s oi(ϑt′) represents a

sequence of the emitted observations from time s to t, s ≤ t. In addition, note that since the process

flows in a discrete time and follows the first order Markovian feature, the current user state St

depends solely on the most recent user state St−1.

The inference of a hidden user state j at time t given the last known hidden user state i at

time s, s ≤ t is presented by

Pr(St = j | Ss = i, ϑτs ), (6.6)

where τ = t − s. (6.6) is termed as predicted P, filtered F , and smoothed S, probabilities of St,

depending on observation sequence of ϑt−1
s , ϑts or ϑTs respectively where T > t.

αj(s, t) =
t∑

t′=s

∑
i

(
αi(s, t− t′)pij(s, t− t′)dj(t

′)
t′∏

t′′=1

oj(ϑt−t′+t′′ = z)

)
, (6.7)

The recognition method uses the filtered probabilities of St where it is derived from (6.6)

as in Fj(s, t) = Pr(St = j | Ss = i, ϑts) in presence of sufficient number of available observations.

The probability of an instant user state recognition is found by the forward algorithm [140], which

is proposed to find the most likely one-step ahead user state in a hidden chain. The forward algo-

rithm relies on updating a probability weight α inductively, which decides the probability of current
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occurrence of a user state, St, generated from the one-step-previous occurrence, St−1. However,

this method works well for traditional HMMs not for Semi-Markovian featured models due to the

random sojourn time distribution between two consecutive user states in the hidden chain. In this

manner, an extended forward algorithm has been proposed in [179, 180] by (6.7) with the condition

of αi(s, t) = πi if t ≤ 0.

Since the recognition process of user states evolves in real time by context-aware applica-

tions, the forward algorithm is employed to assign a proper user state in order to specify current

user activity whenever a new observation is made. On the other hand, to make sure that user state

recognitions are made true, the backward algorithm, whose corresponding weight is denoted by β,

is employed [140]. By this algorithm, the accuracy of previous user state recognitions is validated,

i.e., smoothing. However, applying this algorithm seems redundant due to the fact that it consumes

additional computational power on the mobile device batteries, and also the context-aware appli-

cations run in real-time, thereby there is no point of discovering what happened in the past again.

Hence, the filtered probability becomes

Fj(s, t) = αj(s, t)βj(s, t
′) = αj(s, t), t = t′ = T. (6.8)

Then, the instant user state recognition is found using (6.8) in case where observations are

available by

St = argmax
1≤j≤M

[Fj(s, t)]. (6.9)

Note that computational complexity while calculating system parameters causes a crucial

underflow problem. When time goes by during evolution of ξ, αi(0, t)
t⇒ 0 starts to head to zero

at a exponential rate since pij includes elements being lower than 1. Therefore, Fj(s, t) needs to be

scaled [140] by a factor of
∏t
t′=s

∑
j Fj(s, t′).

In addition to using the filtered probabilities to recognize user states, the predicted prob-

abilities are used to estimate user state in case of no observation received. When power saving

methods are taken into consideration as studied in Section 6.2.2, there will be some time intervals

during sensory operations in which no sensor readings are obtained. As a result, the framework

cannot receive a relevant observation. In that case, the inference of instant user state is based on

the estimation method not on the recognition method.
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The predicted probabilities are found by

Pj(s, t) = Pr(St = j | Ss = i, ϑt−1
1 , �ϑt),

= Pr(St = j, ϑt = z | Ss = i, ϑt−1
1 ),

=
∑
j

Fi(s, t− 1)pij(s, t− 1).

(6.10)

Alternatively, (6.10) can be found by assigning the most likely visionary observation instead

by accepting there is a missing observation:

Pj,z(s, t) =
∑
j

Fi(s, t− 1)pij(s, t− 1)oj(ϑt = z). (6.11)

Then, the most likely observation is selected according to assigning each possible observation

as a final node to observation sequence while calculating (6.11) by

ϑ̂t = argmax
z

∑
j

Pj,z(s, t). (6.12)

Finally, the instant user state estimation is found using (6.11) together with (6.12) by

Ŝt = argmax
1≤j≤M

[Pj,z(s, t)]. (6.13)

6.2.1.4 Time-Variant User State Transition Matrix

The most important feature of context-aware applications is being capable of adapting

themselves to distinctive user behaviors. User relevant context differs in time and the corresponding

user state also does. For instance, one user might remain in the same user state for a long time;

whereas others might be more active by changing their user states frequently. Therefore, it cannot

be expected from the user state transition matrix to remain stationary under such conditions.

• Default Settings: User state transitions can be represented as simple random walk on

a graph [141, 142]. On this graph, a vertex, υ, represents a user state, and an edge

represents a user state transition. Thus, ξ always starts evolving by a default transition

matrix, which is

pdefaultij =
1

d(υi)
, υi ∼ υj (6.14)
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where d(υi) is the number of vertices υj adjacent to υi. For example, if d(υi) is 0,

pdefaultii = 1.

• Update: A random variable N(t) > n− 1 ↔ Tn ≤ t is represented as the total number of

jumps or transitions of the (S − T ) process during (s=0,t]. Therefore, N(t) is also called

the discrete-time counting process of the number of the jumps. Jumps or transitions may

include any transition towards user state itself (i.e., virtual transitions).

By having the counting process, there are some counting parameters that can be calculated where

0 < τ ≤ t as follows:

• The number of visits to user state i during (0, t]: Ni(t) =
∑N(t)−1
n=0 1{Sn=i}

• The number of transitions from user state i to user state j during (0, t]: Nij(t) =∑N(t)
n=1 1{Sn−1=i,Sn=j}

• The number of transitions from user state i to user state j during (0, t] with the sojourn

time, τ , in state i: Nij(τ, t) =
∑N(t)
n=1 1{Sn−1=i,Sn=j,Xn=τ}

The empirical estimations of the user state transition matrix, pij , the conditional distribu-

tions of the sojourn times, fij , and the discrete time semi-Markov kernel, qij , are given in [181, 182]

by

p̂ij(t) = Nij(t)/Ni(t),

f̂ij(τ, t) = Nij(τ, t)/Nij(t),

q̂ij(τ, t) = Nij(τ, t)/Ni(t).

(6.15)

Given empirical estimations in (6.15) approach non-parametric maximum likelihood estima-

tions with having good asymptotic properties if they maximize the likelihood function of

L(t) =
N(t)∏
n=1

pijfij(Xn)(1−
∑
j

B(t)∑
τ=n

qij(τ)). (6.16)

where B(t) = t−XN(t) is called age process showing the sojourn time in the last visited state SN(t).

With the evaluation of (6.16), the corresponding transition density kernel turns into

Qij(s, τ0, τ)
update
=

Qij(s, τ)−Qij(s, τ0)

Qij(s, τ0)
, (6.17)
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where τ0 is the elapsed time since the first entrance into user state i.

pij(s, τ0, τ)
update
= δij(1−H∗

i (s, τ0, τ)) +
∑
m∈M

τ∑
v=τ0

b∗im(s, τ0, v)pmj(s+ v, τ − v). (6.18)

Finally, beginning from the default status in (6.14), the evolving inhomogeneous state tran-

sition probability (6.5) is updated by (6.17) together with (6.3) and (6.4) as in (6.18).

6.2.1.5 Observation Emission Matrix

In Chapter 3, a light-weight online classification method to detect the user centric postural

actions, such as sitting, standing, walking and running, by smartphones is studied. By applying this

work into the current study, the differentiation between user state ‘sitting’ and user state ‘standing’

is made. Then, the observation emission matrix is constructed by

ojz =

1 0

0 1


prob. of
sitting

+

0 1

1 0


 prob. of
standing

 (6.19)

6.2.2 The Output of the Context Inference Framework

In Chapter 4, the convergence of entropy rate belonging to HMM based HAR framework

can distinguish a specific user activity profile is pointed out. In addition to that, the linkage between

the entropy rate and the accuracy of the recognitions is enlightened in this chapter.

Supposing πi(0) > 0 where ∀i ∈ S, the Markov process ξn evolves in bidirectional way over

the distributions of P[n,n+ń] and P
−
[n,n+ń] where ∀n ∈ Z+ and ∀ń ∈ N, and the user state transition

matrix also obeys the condition of pij > 0 ↔ pji > 0, then ξn satisfies

lim
t↓s

πi(s)pij(s, t)

πj(s)pji(s, t)
= 1, (6.20)

which indicates that the inhomogeneous Markov process has instantaneous reversibility at time s,

and hence it yields to have π(s)Q(s) = 0.
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Having the reversibility feature defined by (6.20), the instantaneous entropy production enp

of ξ at time n is given by

enp = H(P[n,n+1], P̄[n,n+1]) =
1

2

∑
i,j∈S

[πni p
n
ij − πnj p

n
ji] log

πni p
n
ij

πnj p
n
ji

. (6.21)

where H(P[n,n+1], P̄[n,n+1]) is the relative entropy of the distribution of (ξn, ξn+1), P[n,n+1], with

respect to the distribution of (ξn+1, ξn), P
¯
[n,n+1].

By using (6.21), Fig. 4.10 shows the convergence of entropy rate under sensory operation

parameters such as fixed duty cycle DC = 1 and variant sampling frequencies fs = {100, 50, 25, 12.5}

Hz. Aggressive sampling method, which takes 100 Hz as fs, draws an actual track of the entropy

rate. Circles over blue line indicate an difference in user behavior. Since user states, such as sitting

and standing, are recognized, the frequentness of transition from one user state to another cannot

be much due to the human nature. Therefore, user state transition matrices over time are desired

as

pij =

0.9 0.1

0.1 0.9

 ,
0.85 0.15

0.1 0.9

 ,
0.8 0.2

0.1 0.9

 ,
0.75 0.25

0.1 0.9

 ,
0.6 0.4

0.1 0.9

 ,
0.5 0.5

0.1 0.9

 .
According to the results, the entropy rate converges late while samplings are collected at fs

being less than 100 Hz. This indicates the reason why accuracy rate decreases as well. The most

significant result can be obtained from Fig. 4.10 is the entropy rate cannot sometimes converge into

any point, where the plot lines belonging to fs = {12.5, 25, 50} Hz stop. When the frequentness of

user state transitions increases, sampling frequency may not be fast enough to capture the activeness

of a user profile. Therefore, the system cannot find any proper user state transition matrix to define

instant user activity profile.

Let ep(s, t) denote a sequence of entropy rates from (6.21) in time range of s up to t. In

addition, assume that a simple threshold is defined by εep = [µep − σep , µep + σep ] where µep and

σep are mean and standard deviation of ep(s, t) respectively. Thereby, the first output delivered to

the sensor management system by the statistical machine as shown in Fig. 6.1 is named as accuracy

notifier, which is defined by

ϕ(s, t) =
1

(t− s+ 1)

t∑
n=s

1(enp∈εep ). (6.22)
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Moreover, τii denotes the return time, i.e., elapsed total sojourn time, to user state i entering

at s.

τii =


min{n = t− s, n ≥ 1, St = i | Ss = i},

∞, St ̸= i, t ≥ 1,

(6.23)

represents the amount of time until the process returns to the same user state i given the fact that

it started from user state i. Note that it may never return back to the same state i.

By considering that a time variable tsuff is assigned during application run to indicate a

sufficient time interval in which user state i would not change, the second output is defined then

using (6.22) and (6.23) by

a(t) =


1, ϕ(s, t) ≥ ϕ, τii > tsuff ,

2, ϕ(s, t) ≥ ϕ, τii ≤ tsuff ,

3, ϕ(s, t) < ϕ,

(6.24)

where ϕ ∈ [0.5, 1] and a(t) denotes the actions for sensory management introduced in Section 6.3.2.

6.3 Sensor Management System

In this section, the effect of variant sensory load profiles on the mobile device battery

depletion is studied. Then, these battery discharge profiles are examined within the concept of

Markov Reward process. In addition, there are five novel solutions provided in this section for

balancing the tradeoff existing between the accuracy in the user state recognitions and the power

consumption required by the recognition process.

6.3.1 Sensor Utilization

The smartphone accelerometer sensor is utilized in order to examine the power efficiency

achieved under different sampling and duty cycling strategies. Assume that a set of DC and a set of

fs are given by {1, 0.75, 0.5} and {100, 50, 25, 12.5} Hz respectively. In addition, let a state space

lie over two sub-spaces, which are sets of DC and fs, as in S
R2

= {DC× fs}. Thus, the state space

is defined as in

SRr = SR
2

{l,k} = {SR
2

{1,100}→1, S
R2

{1,50}→2, . . . , S
R2

{0.5,12.5}→W}, (6.25)
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where SR
2 → SR : {DC = l, fs = k} → r, ∀l ∈ DC, ∀k ∈ fs and W = length(DC)× length(fs).

The state space SR, or SR
2

, is considered to represent different sensory operation methods

supported by the accelerometer sensor in a sensor management system.

To be able to see the effect of SR on the battery depletion, an application is implemented

on the target device. The application runs from point where the smartphone battery is fully-loaded

until it totally depletes. Only one constant pair of sampling frequency and duty cycle, i.e. a state

in SR, is applied as sensory operation parameters to the accelerometer at each application run. A

total time for sensory operation cycle, denoted by tc, is also defined as 1 second. For instance, where

fs = 100 Hz, DC = 100% and tc = 1 sec are taken, the total number of samplings per second

becomes 100.

The application results are shown in Fig. 5.9. Note that Blackberry Java 7.1. SDK only

reveals remaining battery status. According to results, the more aggressive sampling methodology

is applied, the faster the battery depletes. In addition, the lower value of DC makes the battery

recovery effect more significant, and thus it prolongs the battery lifetimes. However, the battery

non-linearities [156, 162] are not intended to study in this chapter.

In Chapter 4, the analytical model of the accelerometer sensor was studied, and the sampling

frequency dependent power consumption in sensory operations was found as in

Θω∗12.5Hz = ω ∗ Ωsample + (ωmax − n) ∗ Ωidle, (6.26)

where ω = {1, 2, 4, 8}, and Ωsample and Ωidle are defined as power consumption occurred during

the operations where sensor makes samplings or runs idle respectively, refer [148] for a detailed

information.

After the application results shown in Fig. 5.9, (6.26) can be extended approximately during

a time span of tc as in

Θtc =
(DC)tc

ωmax/fsmax
Θω∗12.5Hz +

(1−DC)tc
1/fsmax

Ωidle. (6.27)

By using (6.27) and the application results obtained for Fig. 5.9, Fig. 6.5 shows power

consumption rate of each sensory operation methods by the accelerometer, where the aggressive

sampling method, DC = 100% and fs = 100 Hz, is taken as normalizing factor.
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Figure 6.5: Power consumption rate according to variant sensory operation methods

Assume that a semi-Markov chain represents the evolution of changing sensory operation

methods, SR, for a desired sensor management system. The chain consists of a finite state space

SR = {1, ...,W}, the state transition density matrix qR ∈ QR, and the state transition matrix

pR ∈ PR where QR, PR ∈ RW×W. In addition, a reward structure can be attached to this on-

going chain, and it can be thought as a random variable associated with the state occupancies and

transitions. Moreover, assume that the reward, denoted by ψ, is seen as power consumption per

unit time while a mobile device battery is discharging, and SR is redefined as the battery discharge

profiles/states. Thereby, the total reward, i.e., total power consumption, depends on the total

visiting time in a state r where r ∈ SR. Then, it can be said that the reward ψr belonging to state

r is proportional to the corresponding power consumption defined by (6.27).

Finally, the general evolution of a semi-Markov reward process to describe power consump-

tion caused by sensory operations in the sensor management system is given by

Vw(s, t) = Vr(s, t− 1) +
∑
w∈W

pRrw(s, t− 1)ψw(s, t). (6.28)
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The LHS, V , represents the expected present value of all received rewards from time s to t

given that process enters into state i at time s. Whereas, the first element of RHS represents the

aggregation of rewards earned both at previous time; and the second element of RHS is the reward

obtained from either continuity in the same state or transition to another state.

6.3.2 The Trade-off Analysis: The Description of Action Set

There are five different solutions proposed in order to respond the defined trade-off between

the sensing accuracy and the power consumption. The proposed solutions aim at reducing power

consumption by intervening sensory operations. Therefore, the context inference framework always

receives the manipulated sensory samplings, then tries to recognize user states accurately according

to (6.9) and (6.13). After the recognition process is done, it releases a(t) as in (6.24), which defines

actions to be taken on sensory operations. These actions force the proposed solutions to adjust a

pair of duty cycle or sampling frequency dynamically while sensory sampling operations are actively

operated. As a result, a feedback system is integrated into a cyber-physical sensor management

system which balances the increase in power efficiency with the decrease in user state recognition

accuracy.

Actions are defined as commands {1, 2, 3} for sensor management, which are to decrease,

preserve and increase power consumption respectively. If the entropy rate is not stable, which

means user profile changes frequently, and thereby the corresponding entropy rate does not converge

a specific value. Action #3 needs to be taken in this case to increase the power consumption in

sensory operations by making more aggressive samplings. In contrast, if the entropy rate converges

and hangs in a specific margin, then action #2 preserves the same set-up for the applied sensory

operations. More significantly, if the same user profile has been observed at least for a sufficient

time tsuff , then action #1 is taken to reduce power consumption by estimating that user profile is

expected to stay on hold.

6.3.3 Intuitive Solutions

Intuitive solutions either reduces the power consumption by decreasing DC or/and fs or

improves the accuracy in user state recognition by increasing them. Relevant adjustments are

regulated by the action set a(t). There are three different intuitive solutions proposed as follows:
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6.3.3.1 Method I

This method tries to change DC in the first place rather than to change fs. Let the pairs

of DC and fs lie over a space SR
2

which is defined in a matrix of {DC, fs} → {l, k}, l ∈ DC, k ∈ fs.

Method I proposes how to wander over the defined space according to actions by

SR
2

(l, k) =



SR
2

(l − 1, k), a = 1, l ̸= lmin

SR
2

(l, k − 1), a = 1, l = lmin, k ̸= kmin

SR
2

(l + 1, k), a = 3, l ̸= lmax

SR
2

(l, k + 1), a = 3, l = lmax, k ̸= kmax

SR
2

(l, k), otherwise

(6.29)

Whenever an adjustment is needed in the sensory operation, the current index of SR∗ goes

up or down by moving through different duty cycles until it gets to the boundaries, then it goes left

or right by moving through different sampling frequencies.

6.3.3.2 Method II

This method, in contrast to Method I, makes the adjustments in fs in the first place. Then,

the relevant state transitions over SR
2

becomes

SR
2

(l, k) =



SR
2

(l, k − 1), a = 1, k ̸= kmin

SR
2

(l − 1, k), a = 1, k = kmin, l ̸= lmin

SR
2

(l, k + 1), a = 3, k ̸= kmax

SR
2

(l + 1, k), a = 3, k = kmax, l ̸= lmax

SR
2

(l, k), otherwise

(6.30)

6.3.3.3 Method III

State transitions are executed according to the ascending order of power consumption rates

shown in Fig. 6.5. The definition of (6.25) is then re-characterized as in SR = ascend(SR). Hence,
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both DC and fs could be changed simultaneously.

SR(r) =


SR(r − 1), a = 1, i ̸= rmin

SR(r + 1), a = 3, i ̸= rmax

SR(r), otherwise

(6.31)

In summary, the intuitive solutions (6.29), (6.30) and (6.31) regulate pR, and hence affect

the evolution of (6.28).

6.3.4 Constrained Markov Decision Process (CMDP)

Constrained Markov Decision Process (CMDP) is applied into sensor management system

by setting a Markov-optimal policy u. This policy controls sensory sampling operations by deciding

which pair of DC and fs to be assigned in the sampling process, and it randomizes the decisions

over given actions.

The CMDP parameter set is provided as follows:

• Decision Epochs, O: Decisions are the outputs obtained from the context inference frame-

work (see Section 6.2.2).

• State Space, SR: The system state space is given by (6.25).

• Action Space, A: The system action space is given by (6.24).

• State Transition Probability, P arw: This probability matrix defines transition probabilities

among states {r → w} while action a is taken.

P arw =



1
r−1 , a = 1, w < r

1, a = 2, w = r

1
W−r , a = 3, w > r

0, otherwise.

(6.32)

Remark that all transitions form a specific state is set an equal probability according to

the rule of actions.
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• Accuracy Cost, c(r,a): The accuracy cost is the retrieved error rate in user state recogni-

tions while the context inference framework is running, which is defined by ϕ in (6.22).

c(r, a) = 1− ϕar . (6.33)

On the other hand, the default settings for the accuracy cost is ruled by the rate of missing

sampling points under different system states where {(S = r)} → {(DC = l)× (fs = k)}

and ∀a ∈ A:

c(r, a)default = c({l, k}, a) = 1− l + l
k

kmax
. (6.34)

Remark that the default settings are the maximum error rates indeed.

• Power Consumption, d(r,a): Power consumption rate is the reward process ψr:

d(r, a) = ψr, ∀a ∈ A. (6.35)

The policy aims to maximize the accuracy in user state recognitions subjected to the power

constraints. Therefore, a CMDP distinguishes from a regular MDP in the added power consumption

function d, which is related to the constraints Vy where y ∈ [1,Y].

ρ(r, a) is denoted in CMDP as the occupation measure by specifying the probability of a

relevant state-action pair in the decision process which satisfies given constraints, whose probability

distribution is given by

f(γ, u, r, a) =
∞∑
t=1

Pruγ (S
R
t = r,Ar = a), (6.36)

where γ and u are defined any initial distribution and any stationary policy.

Having (6.32), (6.33), (6.34) and (6.35), the constrained optimization problem is given by

the following requirements:

min
ρ

{∑
r

∑
a

ρ(r, a)c(r, a)

}
subject to

∑
r

∑
a ρ(r, a)(δw(r)− P arw) = 0,∑

r

∑
a ρ(r, a) = 1,

ρ(r, a) ≥ 0,

(6.37)
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where ∀r, w ∈ SR, ∀a ∈ A, δw(r) = {1, r = w; 0, otherwise}.

Let u be the optimal policy that satisfies for all i, a:

ur(a) =
ρ(r, a)∑
a ρ(r, a)

, ∀r ∈ S, ∀a ∈ A. (6.38)

whenever the denominator is non-zero. It is concluded from (A.1) in Appendix A that ρ equals to

γ(I − P (u))−1 like defined in (6.37), and hence to (6.36), where I is the identity matrix.

In addition, the following constraints are added into (6.37):

∑
i

∑
a

ρ(r, a)dy(r, a) ≤ Vy, y = 1, ...,Y. (6.39)

where Vy(t) = (1 ± ν)Vy(t − 1) is given for the constraint according to which action is taken, such

as {a = 1 : −ν} and {a = 3 : +ν} where 0 < ν < 1, and {a = 2 : ν = 0}.

Finally, the constrained optimization problem is defined from (6.37) and (6.39) as

{min c subject to dy ≤ Vy}, whose solution is described in [183, 184], and solved based on linear

programming as follows: Find the minimum C∗ ∈ C(γ, u) for any u, ρ ∈ f(γ, u), C(γ, u) = C(ρ(u))

and each Dy(γ, u) = Dy(ρ(u)), see (A.2) and (A.3) in Appendix A for the definition of C(γ, u) and

D(γ, u) respectively.

Under the policy u from (6.38), the expected average accuracy and power consumption cost

is defined by

Eu[C] =
1

n

n∑
n′=1

Eucn′(i, a), (6.40a)

Eu[V ] =
1

n

∑
∀y

n∑
n′=1

Eudyn′(i, a), (6.40b)

where n′ and n are instant and total decision epoch times respectively.

6.3.5 Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP) also describes an optimal solution

to respond to the defined tradeoff. The parameter set by POMDP has some similarities like the one

provided by CMDP. The same states SR, actions a, state transitions P arw are used in this model as

well. A POMDP relies on an agent which takes some action a ∈ A, and hence makes the system move
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from state r to a new state w. Due to the uncertainty in an action, the state transition is modeled

by P arw. In addition, the agent makes an observation x ∈ O to gather information for the decision

on the new system state selection, thereby, the state-observation relationship is probabilistically

modeled by Zawx. In each observation epoch, the agent takes action a in state r, then receives a

reward R(r, a). The POMDP parameter set is given as follows:

• Decision Epochs O, State Space SR, Action Space A and State Transition Probability

P arw are given the same like in Section 6.3.4.

• Observation Emission Probability, Zawx: The observation is the accuracy rate provided by

the context inference framework (see Section 6.2.2).

Zawx(t) =
1

|Z|


ϕ(t), r = w,

(1− ϕ(t)), r ̸= w,

(6.41)

where SR(t−1) = r, SRt = w, ∀a ∈ A, |Z| = ϕ(t) + (W − 1)(1− ϕ(t)), and x = 1 since there

is only one observation, which is the accuracy rate.

• Reward Function, Rar (t): The reward process (i.e., power consumption) ψr is defined in

Section 6.3.1:

Rar (t) = ψr, ∀a ∈ A. (6.42)

• Belief Vector, λar(t): Since the internal state of the underlying POMDP is not directly ob-

servable, the knowledge of the internal state based on the history of all past decisions and

observations could be provided by a belief vector λar(t) ∈ Λ, which gives the conditional

probability of being in state r under action a prior to any state transition.

The belief vector is updated whenever a new knowledge coming in after incorporating the

action and observation obtained at time t within the history set of H(t) = {a(τ), O(τ)}, τ ∈ [1, t].

The updated belief vector is obtained using (6.41) by the Bayes rule:

λaw(t+ 1) = T (λ(t) | a,O) =
Zawx

∑
i P

a
rwλ

a
r(t)∑

x Z
a
wx

∑
r P

a
rxλ

a
r(t)

. (6.43)

The goal defined by OPMDP is to develop an opportunistic sensor sampling strategy which

seeks for a favorable trade-off balance between the accuracy in sensing and energy efficiency. Hence,
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a sensing policy u : Λ → A is defined to map a belief vector λr to an action a. The policy u is

presented by a sequence of functions {u = [η1, η2, ...,∞]} where ηt maps a belief vector λr(t) ∈ Λ to

an action a ∈ A at time t over infinite horizon of POMDP.

From the time at the current belief vector is λ(t), a value function Vt(λ(t)) is denoted to

represent the minimum expected remaining reward which can be earned under the assigned policies.

This reward is obtained through immediate and future rewards. The optimal policy strikes a balance

between earning immediate reward and obtaining a lean toward future decisions on the system.

The optimal strategy aims at minimizing the expected total reward, and it is defined together

with (6.42) and (6.43) as in

u = argmin
u

Eu[
T∑
t=1

Rar (t) | λ(1)]. (6.44)

Hence, the value function for total reward aggregation is given with the help by (6.44) as in

Vt(λ(t)) = min
a

E[Ra(λ(t)) + φVt+1(T (λ(t) | a, Sar (t)))], (6.45)

where Ra(λ) =
∑
r λrR

a
r and φ ∈ [0, 1] is a discount factor.

Due to the impact of the current action on the future rewards, the uncountable belief state

because of the process lies over infinite horizontal space, and the non-stationarity of the optimal

policy, finding an optimal strategy for a POMDP is often computationally prohibitive.

6.3.5.1 Myopic Strategy and Sufficient Statistics

Since the finding of an optimal strategy is computationally restricted, it is crucial to ex-

ploit the available POMDP and develop suboptimal strategies in order to reduce the complexity.

Therefore, it is needed to show the a posterior of distribution of the belief vector under sufficient

statistics. The belief vector (6.43) is then updated based on the chosen action under the following

sufficient statistics:

λr(t+ 1) =


(λ(t)Tr P

a
rw)

T, a′ = {1, 3}, r ̸= w,

λi(t), a′ = 2, r = w,

0, otherwise,

(6.46)

where T is matrix transpose.
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Figure 6.6: Power consumption rate in response to user profile

In addition, a myopic policy is introduced to ignore the impact of the current action on the

future rewards by focusing only minimizing the immediate reward since power consumption caused

by instant sensory operation settings does not rely on future diversity in the sensory operation

methods. Thereby, the myopic policy makes φ = 0 in (6.45), and hence it turns (6.44) into:

SR∗ = argmin
r

E[Rar (λar(t))],

subjects to max(Zaw,O=x(t)) > ε,

(6.47)

where SR∗ is the chosen optimal state, and ε denotes the minimum probability of accuracy allowed

by the process so the accuracy is constrained above this probability.

6.4 Performance Analysis

A case study in a HAR model is examined in order to investigate the defined tradeoff by

proposed sensor management methods. A same user activity profile is examined for each tradeoff
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Figure 6.7: Recognition accuracy rate in response to user profile

analysis. Accordingly, the HAR based user activity profile begins with a random activity pattern

of user states ‘sitting’ and ‘standing’ for a minute, then each state transit into the another one in

the end of the following sojourn times of {5, 10, 30, 60, 100, 300} seconds. The initial one minute

interval is considered for adaptation process carried out by the context inference framework in order

to set required adjustments in the system parameters towards to the activity pattern. Note that the

system parameters have been already set to the default system settings initially by (6.14). From

that point, the sensory operation parameters, which are duty cycle and sampling frequency, are

updated with a 10 second of period. In addition, tsuff is set to 20 seconds. Recall that as long as

the continuing settlement time in any state gets longer than tsuff , the sensor management system

decreases the power consumption, which jeopardizes the recognition accuracy of the activity pattern.

The default sensory operation parameters are set to the aggressive sampling method, which is equal

to the pair of {100%, 100 Hz} for {DC, fs}.

The context inference framework recognizes a user state with a period of one second under

the aggressive sampling method. The underlying Markovian chain in the framework has a finite
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horizon length of 60, which means a minute long recent history of user states. Every one minute,

system parameters are updated according to (6.18). Except for the aggressive sampling method

in sensory operations, the context inference framework may not have a sensory observation at any

time. For instance, in a case where the pair of {50%, 50 Hz} is selected for the sensory operation

parameters, the decision period to recognize a user state is extended to 4 seconds, which results in

having 3 empty decision points to estimate missing user state recognitions.

The tradeoff analysis is carried out for each sensor management method. The tradeoff

solutions by each method are shown in Fig. 6.6 for the analysis of power consumption rate according

to (6.28), (6.40b) and (6.45), and Fig. 6.7 for the analysis of recognition accuracy according to

(6.22), (6.40a) and (6.47). Also, the tradeoff solutions by each method in both figures are noted

by the suffixes ’a’ and ’b’ to demonstrate without/with some constraints added. The suffix ’a’

indicates the actual sensor management methods without any additional constraints. However, the

suffix ’b’ sets extra rules on the methods. First, a 10% tolerance value is added into Method I, II

and III to constrain the recognition accuracy rate, which help the prevention of drastic recognition

errors. If the constraint is exceeded, the sensory operation parameters are forced to set the default

settings, i.e, the aggressive sampling. Second, for CMDP, there is another constraint set on the power

consumption rate to control the tendency of the decision process to take an immoderate decrease

in power consumption. According to the regulation, the sensory operation must stay in ±25% of

the present power consumption level. Finally, for POMDP, the update process of the belief vector

is reconfigured by adding the feature of λi(t+ 1) = 1 where a = 2.

In light of the explanations above, the following discussions can be made through both

figures:

• Recognition accuracy rate decreases significantly during the initial progress of context

inference framework due to the adaptation to the user by the framework is not adequate,

and the user exhibits a variant activity profile by changing user states regularly. Hence,

the power consumption rate shows a zig-zag line in Fig. 6.7 by taking an increase to

compensate the worsening recognition accuracy rate, and then by taking a decrease to

benefit from the adaptation feature if possible.
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• When the time passes by, since the framework gets a better adaptation to the user activ-

ity profile, the recognition accuracy rate increases even though power consumption rate

decreases.

• Whenever a state transition occurs after a long visiting time in a user state or the number

of estimation in user state recognitions increases after a slower sampling policy is attained

or the entropy rate cannot converge into any point, the recognition accuracy rate may

show a slight decrease; however, the framework will fix the accuracy rate if a drastic

decrease is observed.

• Amongst intuitive solutions, a comparison can be made by M3>M1>M2 in terms of the

power consumption rate, and by M1>M3>M2 in terms of the recognition accuracy rate.

Results show that the sampling in slower frequencies consume higher power than the

sampling in lower duty cycles; however, in terms of the recognition accuracy, it shows

the opposite assumption. It is because that sampling in slower frequencies still obtain

information about user activity where the sampling in lower duty cycles cannot do. On

the other hand, M3 has the highest power consumption since it switches sensor operation

modestly while achieving a fine accuracy in user state recognitions.

• MXb>MXa where X=I, II, III and CMDPb>CMDPa are met in terms of the power

consumption rate due to the aggressive sampling is forced to apply in case where severe

errors occur in user state recognitions.

• POMDPb makes a clear conclusion about the belief vector rather than POMDPa does

when a sufficient visiting time elapsed on a specific user state. Hence, the power con-

sumption decreases since the conclusion notifies the continuity of the same user state.

• MIIIa responds in a similar way what CMDPa and POMDPa have while trying to reach

their optimal policies.

In general, the tradeoff solutions achieve overall 50% enhancement in power consumption

caused by the physical sensor work with respect to overall 10% decrease in accuracy rate for user

state recognitions thanks to the context inference framework.

To sum up, this chapter presents a novel comprehensive framework within the futuristic

concept of context-awareness in mobile sensing. A statistical machine based context inference model
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together with an intelligent sensor management system is created in order to recognize human-centric

activities by aiming at achieving a tolerable power consumption caused by the total process. The

study takes the smartphone accelerometer sensor into the scope to show the effectiveness of the

proposed approaches as well as leaving the door open for future improvements in the functionality

of other smartphone sensors.

While creating the statistical machine, some features are taken into the consideration, such

as time-varying user activity profile, system adaptability to the changing profile, nonuniform time

distribution of sensory sampling process due to the power saving precautions, and the estimation

process where missing sensory observations exist. On the other hand, while creating the sensor

management system, the analytical modeling of power consumption caused by the accelerometer

is examined so that by the collaboration with the statistical machine, a better balance is achieved

for the defined tradeoff throughout the chapter. For the tradeoff analysis, some intuitive and op-

timal sensory operation solutions are provided in order to increase efficiency in the battery power

consumption; whereas the statistical machine tries to maintain the accuracy rate provided by the

framework.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 The List of Contributions

• Chapter 2: This chapter surveys the context-awareness in ubiquitous sensing. It provides a

comprehensive introduction to context definition, context presentation, context modeling

and context inference. It also points out the importance of a context-aware middleware

design and the challenges that are faced while designing process and system integration.

Finally, the chapter summarizes context aware applications according to the interested

context, and gives current trends in this area.

• Chapter 3: A sensory data has its own signal characteristics. Instead of applying computa-

tionally harsh signal processing techniques toward any sensory data, a sufficient number of

recognition algorithms must be considered to find out the best context-exploiting meth-

ods. In this sense, this chapter proposes an online solution which intends to perfectly

exploit acceleration signals within the fast Decision Tree (DT) classifiers without setting

any predefined/fixed thresholds over any specific acceleration spaces in order to differ-

entiate user activities, such as sitting, standing, walking, running, and transition among

activities. The proposed classification method provides the following properties:

1. unsupervised learning : no priori information, no fixed thresholds, no initial

training data classes;

2. adaptive: robust solution to a changing orientation of the device;

3. light-weight : efficient tree-based classification by applying sufficient signal pro-

cessing toolbox: no redundant computational workload;

4. online: instant context inference;

5. assisting : working standalone and/or assisting other classification algorithms

by creating training data classes or input matrices;
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6. updating : computational efficient update/add/delete process on training data

classes.

The chapter also proposes a context monitoring system which controls required processes

for context analysis in a such way that redundant computational repetitions of recognizing

the same contextual information in a sequence of time can be avoided.

• Chapter 4: In this chapter, a Hidden Markov Model (HMM) based framework is proposed

in order to represent user states as outcome of either a recognition or/and estimation model

for context-aware applications. The framework also applies a sensor power management

method, such as adaptive sampling, in order to prolong the device battery lifetime. There-

fore, user states are either recognized as an inference of actual sensor readings or as an

estimation by HMM. Adaptive sampling changes operational behavior of a sensor by set-

ting different sampling frequencies. With this method, sleeping time for a sensor can be

extended by entering its idle operating mode frequently. While the sensor is in idle mode,

the user might either keep or change his/her current activity. In this sense, a statistical

model is required to track time-variant user activity profiles in order to predict the best

likely user state that fits into instant user behavior.

There are a few distinctive points provided by this chapter:

1. The framework accepts that user behavior changes in time; thereby, it assumes

that HMM parameters are inhomogeneous (i.e., time-variant).

2. Every user differs from each other and each one responds uniquely while pro-

ducing an activity pattern. Thus, a desired system cannot have predefinitions

for each activity profile. User activity profile also changes in time which forces

the system to make proper adjustments accordingly in order to make accurate

user state recognitions. Thereby, adaptability problem is introduced for inho-

mogeneous user behaviors, and a relevant solution is given by the uncertainty

of entropy rate. It is shown that the convergence of entropy rate could be used

to notify a specific user behavior.

3. Effective online pattern recognition algorithms for context extraction through

sensory data are adopted from Chapter 3 in order to infer relevant activities

within the provided context and to conduct the observation analysis of HMM.
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4. By changing sampling frequencies in sensory operations, the trade-off analysis is

examined and the framework is validated. The connection between the context

inference under different sampling frequencies and its effect on the convergence

of entropy rate is discovered.

5. In case of occurrences of missing observations, a desired system must esti-

mate missing observations to make sure that accuracy provided by the system

decisions are maintained. Missing observations are found by Naive Bayesian

approach within HMMs.

• Chapter 5: This chapter studies the battery modeling under the scope of the battery non-

linearities with respect to variant discharge profiles. In addition, the energy consumption

behavior of smartphone sensors are analytically modeled, especially a real time application

is carried out for the accelerometer sensor to investigate how any change in sensory oper-

ations affects the power consumption profiles triggered by the sensor and depletion on the

battery. Also, energy consumption profiles are created by assigning different pair of duty

cycles and sampling frequencies during the sensory operations. Finally, a Markov-reward

process is integrated in order to model the energy consumption profiles and represents

the cost by each profile as an accumulated reward. The accumulated reward, i.e., total

energy consumption, is also linked to the battery modeling to make a connection between

the usage pattern on sensors and the battery behavior. With understanding of the non-

linear battery behavior with respect to diverse operation methods in sensors, a tolerable

power consumption balance could be achieved while employing context aware services in

resource constrained mobile devices.

There are a few distinctive points provided by this chapter:

1. Studying mobile device based battery modeling, which adopts Kinetic Battery

Model (KiBaM), under the scope of battery non-linearities with respect to

variant load profiles.

2. Modeling energy consumption behavior of accelerometers analytically as an

example.

3. A Markov reward process is integrated in order to create energy consumption

profiles, which consist of different pair of duty cycles and sampling frequencies
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in sensor operations, and represent the total energy cost by each profile as an

accumulated reward in the process.

4. Presenting the linkage between different usage patterns on the accelerometer

sensor and the battery.

5. It is intended that modeling the battery nonlinearities together with the un-

derstanding the effects of different usage patterns in sensor operations on the

power consumption and the battery discharge may lead to discover optimal

energy reduction strategies in order to extend the battery lifetimes and help a

continual improvement in context-aware mobile services.

• Chapter 6: In this chapter, a novel comprehensive framework is presented within the

futuristic concept of context-awareness in mobile sensing. A statistical machine based

context inference model together with an intelligent sensor management system is created

in order to recognize human-centric activities by aiming at achieving a tolerable power

consumption caused by the total process. The study takes the smartphone accelerometer

sensor into the scope to show the effectiveness of the proposed approaches as well as

leaving the door open for future improvements in the functionality of other smartphone

sensors. The ultimate goal of this chapter is to recognize user activities accurately and to

make sure power efficiency is maximized. Most importantly, this research intends to create

and clarify an effective HMM-based framework included with power saving methods at

the low-level sensor operations in order to guide the development of future context-aware

applications.

While creating the statistical machine, some features are taken into the consideration,

such as time-varying user activity profile, system adaptability to the changing profile,

nonuniform time distribution of sensory sampling process due to the power saving pre-

cautions, and the estimation process where missing sensory observations exist. On the

other hand, while creating the sensor management system, the analytical modeling of

power consumption caused by the accelerometer is examined so that by the collabora-

tion with the statistical machine, a better balance is achieved for the defined tradeoff

throughout the chapter. For the tradeoff analysis, some intuitive and optimal sensory

operation solutions are provided in order to increase efficiency in the battery power con-
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sumption; whereas the statistical machine tries to maintain the accuracy rate provided

by the framework.

7.2 Research Highlights

• Light-weight online unsupervised posture detection by smartphone accelerometer as an

example of physical context inference

– Standalone mode

– Assisting mode for widely used supervised classification methods by providing

training data classes/system matrices

∗ Helping them to be used for online processing by providing compu-

tational light-weight class/training sample update

• Studying smartphone battery non-linearities for variant loads by changing sampling peri-

ods and duty cycles

• Studying accelerometer sensor in terms of power consumption model with respect to

variant sampling strategies

• Presenting the linkage between different usage patterns on the accelerometer sensor and

the battery discharge

• Creating and clarifying an effective HMM based framework included with context inference

methods to guide the development of real-time operating user-oriented future context-

aware applications

– No prior/fixed user behavior definition/context inference

– Adaptability to time-invariant user behaviors

– Adaptive and sub-optimal sampling policies

– Robust inference solution with respect to unexpected/changing sampling inter-

vals

– Handling missing observations due to sensor saving methods

– Providing a fine balance for the trade-off
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7.3 Future Works

This dissertation provides solutions on emerging problems on context-awareness using one

sensor model; whereas, multiple sensor utilization may provide a similar context. In such cases, the

fusion of sensors need to be applied while constructing context aware frameworks like designed in

Chapter 4 and 6. In addition, a sensor management system needs to be created to dynamically select

a sufficient number of sensors while inferring a context. To achieve power efficiency with respect

battery non-linearities and sensors’ behaviors examined in Chapter 5, the system has to put sensors

into an order according to their power consumption level and application relevance. Depending on

which user activity profile is active, a different set of sensors is selected. Moreover, like introduced

in Chapter 3, the definition of user states can be extended by detecting more postural actions.

Especially, light-weight online unsupervised based detection algorithms have to be discovered for

any mobile device based sensor to be able to enhance the working of context-aware applications in

resource-limited mobile computing environments.
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Appendix A : Some Derivations for CMDP

Where γ and u are defined any initial distribution and any stationary policy, r, w ∈ SR,

a ∈ A, the occupation measure is derived from

ρ(w) = γ(r) +
∑
r

∑
a(r)

ρ(w, a)P arw

= γ(w) +
∑
r

ρ(r)
∑
a(r)

ρ(w, a)

ρ(w)
P arw

= γ(w) +
∑
r

ρ(r)
∑
a(r)

uw(a)P
a
rw

= γ(w) +
∑
r

ρ(r)Prw(u)

(A.1)

yields to have ρ = γ(I − Prw(u))
−1.

The expected cost is expressed as in

C(γ, u) = Euγ {
∞∑
t=1

c(SRt = r,At = a)}

=
∞∑
t=1

Euγ c(S
R
t = r,At = a)

=

∞∑
t=1

∑
r

∑
ai

Pr(SRt = r,At = a)c(r, a)

=
∑
r

∑
ar

∞∑
t=1

Pr(SRt = r,At = a)c(r, a)

=
∑
r

∑
ar

f(γ, u, r, a)c(r, a)

(A.2)

In the similar way, for the constraints,

Dy(γ, u) =
∑
r

∑
ar

f(γ, u, r, a)dy(r, a) (A.3)
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Appendix B : Copyright Permission for Chapter 4
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